Tumor progression depends critically upon the interactions between the tumor cells and their microenvironment. The tumor microenvironment is heterogeneous and dynamic; it consists of extracellular matrix, stromal cells, immune cells, progenitor cells, and blood and lymphatic vessels. The emerging fields of tissue engineering and microtechnologies have opened up new possibilities for engineering physiologically relevant and spatially well-defined microenvironments. These in vitro models allow specific manipulation of biophysical and biochemical parameters, such as chemical gradients, biomatrix stiffness, metabolic stress, and fluid flows; thus providing a means to study their roles in certain aspects of tumor progression such as cell proliferation, invasion, and crosstalk with other cell types. Challenges and perspectives for deconvolving the complexity of tumor microenvironments will be discussed. Emphasis will be given to in vitro models of tumor cell migration and invasion.

References

References
1.
Roussos
,
E. T.
,
Condeelis
,
J. S.
, and
Patsialou
,
A.
,
2011
, “
Chemotaxis in Cancer
,”
Nat. Rev. Cancer
,
11
, pp.
573
587
.10.1038/nrc3078
2.
Butcher
,
D. T.
,
Alliston
,
T.
, and
Weaver
,
V. M.
,
2009
, “
A Tense Situation: Forcing Tumour Progression
,”
Nat. Rev. Cancer
,
9
, pp.
108
122
.10.1038/nrc2544
3.
Allavena
,
P.
,
Germano
,
G.
,
Marchesi
,
F.
, and
Mantovani
,
A.
,
2011
, “
Chemokines in Cancer Related Inflammation
,”
Exp. Cell Res.
,
317
, pp.
664
673
.10.1016/j.yexcr.2010.11.013
4.
Paszek
,
M. J.
,
Zahir
,
N.
,
Johnson
,
K. R.
,
Lakins
,
J. N.
,
Rozenberg
,
G. I.
,
Gefen
,
A.
,
Reinhart-King
,
C. A.
,
Margulies
,
S. S.
,
Dembo
,
M.
,
Boettiger
,
D.
,
Hammer
,
D. A.
, and
Weaver
,
V. M.
,
2005
, “
Tensional Homeostasis and the Malignant Phenotype
,”
Cancer Cell
,
8
, pp.
241
254
.10.1016/j.ccr.2005.08.010
5.
Bissell
,
M. J.
, and
Hines
,
W. C.
,
2011
, “
Why Don't We Get More Cancer? A Proposed Role of the Microenvironment in Restraining Cancer Progression
,”
Nat. Med.
,
17
, pp.
320
329
.10.1038/nm.2328
6.
Gajewski
,
T. F.
,
2012
, “
Cancer Immunotherapy
,”
Mol. Oncol.
,
6
, pp.
242
250
.10.1016/j.molonc.2012.01.002
7.
Mellman
,
I.
,
Coukos
,
G.
, and
Dranoff
,
G.
,
2011
, “
Cancer Immunotherapy Comes of Age
,”
Nature
,
480
, pp.
480
489
.10.1038/nature10673
8.
Zitvogel
,
L.
,
Tesniere
,
A.
, and
Kroemer
,
G.
,
2006
, “
Cancer Despite Immunosurveillance: Immunoselection and Immunosubversion
,”
Nat. Rev. Immunol.
,
6
, pp.
715
727
.10.1038/nri1936
9.
Hanahan
,
D.
, and
Weinberg
,
R. A.
,
2011
, “
Hallmarks of Cancer: The Next Generation
,”
Cell
,
144
, pp.
646
674
.10.1016/j.cell.2011.02.013
10.
Helmlinger
,
G.
,
Yuan
,
F.
,
Dellian
,
M.
, and
Jain
,
R. K.
,
1997
, “
Interstitial pH and pO(2) Gradients in Solid Tumors In Vivo: High-Resolution Measurements Reveal a Lack of Correlation
,”
Nat. Med.
,
3
, pp.
177
182
.10.1038/nm0297-177
11.
Netti
,
P. A.
,
Berk
,
D. A.
,
Swartz
,
M. A.
,
Grodzinsky
,
A. J.
, and
Jain
,
R. K.
,
2000
, “
Role of Extracellular Matrix Assembly in Interstitial Transport in Solid Tumors
,”
Cancer Res.
,
60
, pp.
2497
2503
.
12.
Jain
,
R. K.
,
1987
, “
Transport of Molecules in the Tumor Interstitium: A Review
,”
Cancer Res.
,
47
, pp.
3038
3050
.
13.
Swartz
,
M. A.
, and
Fleury
,
M. E.
,
2007
, “
Interstitial Flow and Its Effects in Soft Tissues
,”
Annu. Rev. Biomed. Eng.
,
9
, pp.
229
256
.10.1146/annurev.bioeng.9.060906.151850
14.
Baxter
,
L. T.
, and
Jain
,
R. K.
,
1989
, “
Transport of Fluid and Macromolecules in Tumors. I. Role of Interstitial Pressure and Convection
,”
Microvasc. Res.
,
37
, pp.
77
104
.10.1016/0026-2862(89)90074-5
15.
Boucher
,
Y.
,
Baxter
,
L. T.
, and
Jain
,
R. K.
,
1990
, “
Interstitial Pressure Gradients in Tissue-Isolated and Subcutaneous Tumors: Implications for Therapy
,”
Cancer Res.
,
50
, pp.
4478
4484
.
16.
Helmlinger
,
G.
,
Netti
,
P. A.
,
Lichtenbeld
,
H. C.
,
Melder
,
R. J.
, and
Jain
,
R. K.
,
1997
, “
Solid Stress Inhibits the Growth of Multicellular Tumor Spheroids
,”
Nat. Biotechnol.
,
15
, pp.
778
783
.10.1038/nbt0897-778
17.
Swartz
,
M. A.
, and
Lund
,
A. W.
,
2012
, “
Lymphatic and Interstitial Flow in the Tumour Microenvironment: Linking Mechanobiology With Immunity
,”
Nat. Rev. Cancer
,
12
, pp.
210
219
.10.1038/nrc3186
18.
Fleury
,
M. E.
,
Boardman
,
K. C.
, and
Swartz
,
M. A.
,
2006
, “
Autologous Morphogen Gradients by Subtle Interstitial Flow and Matrix Interactions
,”
Biophys. J.
,
91
, pp.
113
121
.10.1529/biophysj.105.080192
19.
Helm
,
C. L. E.
,
Fleury
,
M. E.
,
Zisch
,
A. H.
,
Boschetti
,
F.
, and
Swartz
,
M. A.
,
2005
, “
Synergy Between Interstitial Flow and VEGF Directs Capillary Morphogenesis In Vitro Through a Gradient Amplification Mechanism
,”
Proc. Natl. Acad. Sci. U.S.A.
,
102
, pp.
15779
15784
.10.1073/pnas.0503681102
20.
Munson
,
J. M.
,
Bellamkonda
,
R. V.
, and
Swartz
,
M. A.
,
2013
, “
Interstitial Flow in a 3D Microenvironment Increases Glioma Invasion by a CXCR4-Dependent Mechanism
,”
Cancer Res.
,
73
, pp.
1536
1546
.10.1158/0008-5472.CAN-12-2838
21.
Shieh
,
A. C.
,
Rozansky
,
H. A.
,
Hinz
,
B.
, and
Swartz
,
M. A.
,
2011
, “
Tumor Cell Invasion Is Promoted by Interstitial Flow-Induced Matrix Priming by Stromal Fibroblasts
,”
Cancer Res.
,
71
, pp.
790
800
.10.1158/0008-5472.CAN-10-1513
22.
Shields
,
J. D.
,
Fleury
,
M. E.
,
Yong
,
C.
,
Tomei
,
A. A.
,
Randolph
,
G. J.
, and
Swartz
,
M. A.
,
2007
, “
Autologous Chemotaxis As a Mechanism of Tumor Cell Homing to Lymphatics Via Interstitial Flow and Autocrine CCR7 Signaling
,”
Cancer Cell
,
11
, pp.
526
538
.10.1016/j.ccr.2007.04.020
23.
Haessler
,
U.
,
Teo
,
J. C. M.
,
Foretay
,
D.
,
Renaud
,
P.
, and
Swartz
,
M. A.
,
2012
, “
Migration Dynamics of Breast Cancer Cells in a Tunable 3D Interstitial Flow Chamber
,”
Integr. Biol.
,
4
, pp.
401
409
.10.1039/c1ib00128k
24.
Polacheck
,
W. J.
,
Charest
,
J. L.
, and
Kamm
,
R. D.
,
2011
, “
Interstitial Flow Influences Direction of Tumor Cell Migration Through Competing Mechanisms
,”
Proc. Natl. Acad. Sci. U.S.A.
,
108
, pp.
11115
11120
.10.1073/pnas.1103581108
25.
Qazi
,
H.
,
Shi
,
Z. D.
, and
Tarbell
,
J. M.
,
2011
, “
Fluid Shear Stress Regulates the Invasive Potential of Glioma Cells Via Modulation of Migratory Activity and Matrix Metalloproteinase Expression
,”
PLoS One
,
6
(5), p.
e20348
.10.1371/journal.pone.0020348
26.
Kim
,
S.
,
Kim
,
H. J.
, and
Jeon
,
N. L.
,
2010
, “
Biological Applications of Microfluidic Gradient Devices
,”
Integr. Biol.
,
2
, pp.
584
603
.10.1039/c0ib00055h
27.
Wlodkowic
,
D.
, and
Cooper
,
J. M.
,
2010
, “
Tumors on Chips: Oncology Meets Microfluidics
,”
Curr. Opin. Chem. Biol.
,
14
, pp.
556
567
.10.1016/j.cbpa.2010.08.016
28.
Meyvantsson
,
I.
, and
Beebe
,
D. J.
,
2008
, “
Cell Culture Models in Microfluidic Systems
,”
Annu. Rev. Anal. Chem.
,
1
, pp.
423
449
.10.1146/annurev.anchem.1.031207.113042
29.
Condeelis
,
J.
, and
Segall
,
J. E.
,
2003
, “
Intravital Imaging of Cell Movement in Tumours
,”
Nat. Rev. Cancer
,
3
, pp.
921
930
.10.1038/nrc1231
30.
Hebner
,
C.
,
Weaver
,
V. M.
, and
Debnath
,
J.
,
2008
, “
Modeling Morphogenesis and Oncogenesis in Three-Dimensional Breast Epithelial Cultures
,”
Annu. Rev. Pathol.
,
3
, pp.
313
339
.10.1146/annurev.pathmechdis.3.121806.151526
31.
Petersen
,
O. W.
,
Ronnovjessen
,
L.
,
Howlett
,
A. R.
, and
Bissell
,
M. J.
,
1992
, “
Interaction With Basement Membrane Serves to Rapidly Distinguish Growth and Differentiation Patterns of Normal and Malignant Human Breast Epithelial Cells
,”
Proc. Natl. Acad. Sci. U.S.A.
,
89
, pp.
9064
9068
.10.1073/pnas.89.19.9064
32.
Yu
,
H. M.
,
Mouw
,
J. K.
, and
Weaver
,
V. M.
,
2011
, “
Forcing Form and Function: Biomechanical Regulation of Tumor Evolution
,”
Trends Cell Biol.
,
21
, pp.
47
56
.10.1016/j.tcb.2010.08.015
33.
Kaufman
,
L. J.
,
Brangwynne
,
C. P.
,
Kasza
,
K. E.
,
Filippidi
,
E.
,
Gordon
,
V. D.
,
Deisboeck
,
T. S.
, and
Weitz
,
D. A.
,
2005
, “
Glioma Expansion in Collagen I Matrices: Analyzing Collagen Concentration-Dependent Growth and Motility Patterns
,”
Biophys. J.
,
89
, pp.
635
650
.10.1529/biophysj.105.061994
34.
Carmeliet
,
P.
, and
Jain
,
R. K.
,
2000
, “
Angiogenesis in Cancer and Other Diseases
,”
Nature
,
407
, pp.
249
257
.10.1038/35025220
35.
Jain
,
R. K.
,
2005
, “
Normalization of Tumor Vasculature: An Emerging Concept in Antiangiogenic Therapy
,”
Science
,
307
, pp.
58
62
.10.1126/science.1104819
36.
Clauss
,
M. A.
, and
Jain
,
R. K.
,
1990
, “
Interstitial Transport of Rabbit and Sheep Antibodies in Normal and Neoplastic Tissues
,”
Cancer Res.
,
50
, pp.
3487
3492
.
37.
Berk
,
D. A.
,
Yuan
,
F.
,
Leunig
,
M.
, and
Jain
,
R. K.
,
1997
, “
Direct In Vivo Measurement of Targeted Binding in a Human Tumor Xenograft
,”
Proc. Natl. Acad. Sci. U.S.A.
,
94
, pp.
1785
1790
.10.1073/pnas.94.5.1785
38.
Banerjee
,
R. K.
,
van Osdol
,
W. W.
,
Bungay
,
P. M.
,
Sung
,
C.
, and
Dedrick
,
R. L.
,
2001
, “
Finite Element Model of Antibody Penetration in a Prevascular Tumor Nodule Embedded in Normal Tissue
,”
J. Control Rel.
,
74
, pp.
193
202
.10.1016/S0168-3659(01)00317-0
39.
Banerjee
,
R. K.
,
Sung
,
C.
,
Bungay
,
P. M.
,
Dedrick
,
R. L.
, and
van Osdol
,
W. W.
,
2002
, “
Antibody Penetration Into a Spherical Prevascular Tumor Nodule Embedded in Normal Tissue
,”
Ann. Biomed. Eng.
,
30
, pp.
828
839
.10.1114/1.1496087
40.
Zheng
,
Y.
,
Chen
,
J.
,
Craven
,
M.
,
Choi
,
N. W.
,
Totorica
,
S.
,
Diaz-Santana
,
A.
,
Kermani
,
P.
,
Hempstead
,
B.
,
Fischbach-Teschl
,
C.
,
Lopez
,
J. A.
, and
Stroock
,
A. D.
,
2012
, “
In Vitro Microvessels for the Study of Angiogenesis and Thrombosis
,”
Proc. Natl. Acad. Sci. U.S.A.
,
109
, pp.
9342
9347
.10.1073/pnas.1201240109
41.
Tung
,
C. K.
,
Krupa
,
O.
,
Apaydin
,
E.
,
Liou
,
J. J.
,
Diaz-Santana
,
A.
,
Kim
,
B. J.
, and
Wu
,
M.
,
2013
, “
A Contact Line Pinning Based Microfluidic Platform for Modelling Physiological Flows
,”
Lab Chip
,
13
, pp.
3876
3885
.10.1039/c3lc50489a
42.
Song
,
J. W.
,
Cavnar
,
S. P.
,
Walker
,
A. C.
,
Luker
,
K. E.
,
Gupta
,
M.
,
Tung
,
Y. C.
,
Luker
,
G. D.
, and
Takayama
,
S.
,
2009
, “
Microfluidic Endothelium for Studying the Intravascular Adhesion of Metastatic Breast Cancer Cells
,”
PLoS One
,
4
, p.
e5756
.10.1371/journal.pone.0005756
43.
Zervantonakis
,
I. K.
,
Hughes-Alford
,
S. K.
,
Charest
,
J. L.
,
Condeelis
,
J. S.
,
Gertler
,
F. B.
, and
Kamm
,
R. D.
,
2012
, “
Three-Dimensional Microfluidic Model for Tumor Cell Intravasation and Endothelial Barrier Function
,”
Proc. Natl. Acad. Sci. U.S.A.
,
109
, pp.
13515
13520
.10.1073/pnas.1210182109
44.
Chambers
,
A. F.
,
Groom
,
A. C.
, and
MacDonald
,
I. C.
,
2002
, “
Dissemination and Growth of Cancer Cells in Metastatic Sites
,”
Nat. Rev. Cancer
,
2
, pp.
563
572
.10.1038/nrc865
45.
Steeg
,
P. S.
,
2006
, “
Tumor Metastasis: Mechanistic Insights and Clinical Challenges
,”
Nat. Med.
,
12
, pp.
895
904
.10.1038/nm1469
46.
Renkawitz
,
J.
, and
Sixt
,
M.
,
2010
, “
Mechanisms of Force Generation and Force Transmission During Interstitial Leukocyte Migration
,”
EMBO Rep.
,
11
, pp.
744
750
.10.1038/embor.2010.147
47.
Guck
,
J.
,
Lautenschlager
,
F.
,
Paschke
,
S.
, and
Beil
,
M.
,
2010
, “
Critical Review: Cellular Mechanobiology and Amoeboid Migration
,”
Integ. Biol.
,
2
, pp.
575
583
.10.1039/c0ib00050g
48.
Friedl
,
P.
, and
Weigelin
,
B.
,
2008
, “
Interstitial Leukocyte Migration and Immune Function
,”
Nat. Immunol.
,
9
, pp.
960
969
.10.1038/ni.f.212
49.
Zaman
,
M. H.
,
Trapani
,
L. M.
,
Siemeski
,
A.
,
MacKellar
,
D.
,
Gong
,
H. Y.
,
Kamm
,
R. D.
,
Wells
,
A.
,
Lauffenburger
,
D. A.
, and
Matsudaira
,
P.
,
2006
, “
Migration of Tumor Cells in 3D Matrices Is Governed by Matrix Stiffness Along With Cell-Matrix Adhesion and Proteolysis
,”
Proc. Natl. Acad. Sci. U.S.A.
,
103
, pp.
10889
10894
.10.1073/pnas.0604460103
50.
Lauffenburger
,
D. A.
, and
Horwitz
,
A. F.
,
1996
, “
Cell Migration: A Physically Integrated Molecular Process
,”
Cell
,
84
, pp.
359
369
.10.1016/S0092-8674(00)81280-5
51.
Galbraith
,
C. G.
,
Yamada
,
K. M.
, and
Sheetz
,
M. P.
,
2002
, “
The Relationship Between Force and Focal Complex Development
,”
J. Cell Biol.
,
159
, pp.
695
705
.10.1083/jcb.200204153
52.
Stetler-Stevenson
,
W. G.
,
Aznavoorian
,
S.
, and
Liotta
,
L. A.
,
1993
, “
Tumor Cell Interactions With the Extracellular Matrix During Invasion and Metastasis
,”
Annu. Rev. Cell Biol.
,
9
, pp.
541
573
.10.1146/annurev.cb.09.110193.002545
53.
Wolf
,
K.
,
Mazo
,
I.
,
Leung
,
H.
,
Engelke
,
K.
,
von Andrian
,
U. H.
,
Deryugina
,
E. I.
,
Strongin
,
A. Y.
,
Brocker
,
E. B.
, and
Friedl
,
P.
,
2003
, “
Compensation Mechanism in Tumor Cell Migration: Mesenchymal-Amoeboid Transition After Blocking of Pericellular Proteolysis
,”
J. Cell Biol.
,
160
, pp.
267
277
.10.1083/jcb.200209006
54.
Wells
,
A.
,
Grahovac
,
J.
,
Wheeler
,
S.
,
Ma
,
B.
, and
Lauffenburger
,
D.
,
2013
, “
Targeting Tumor Cell Motility As a Strategy Against Invasion and Metastasis
,”
Trends Pharmacol. Sci.
,
34
, pp.
283
289
.10.1016/j.tips.2013.03.001
55.
Kim
,
B. J.
,
Hannanta-anan
,
P.
,
Chau
,
M.
,
Kim
,
Y. S.
,
Swartz
,
M. A.
, and
Wu
,
M.
,
2013
, “
Cooperative Roles of SDF-1alpha and EGF Gradients on Tumor Cell Migration Revealed by a Robust 3D Microfluidic Model
,”
PloS One
,
8
, p.
e68422
.10.1371/journal.pone.0068422
56.
Coussens
,
L. M.
,
Fingleton
,
B.
, and
Matrisian
,
L. M.
,
2002
, “
Matrix Metalloproteinase Inhibitors and Cancer: Trials and Tribulations
,”
Science
,
295
, pp.
2387
2392
.10.1126/science.1067100
57.
Ulrich
,
T. A.
,
Pardo
,
E. M. D.
, and
Kumar
,
S.
,
2009
, “
The Mechanical Rigidity of the Extracellular Matrix Regulates the Structure, Motility, and Proliferation of Glioma Cells
,”
Cancer Res.
,
69
, pp.
4167
4174
.10.1158/0008-5472.CAN-08-4859
58.
Tse
,
J. M.
,
Cheng
,
G.
,
Tyrrell
,
J. A.
,
Wilcox-Adelman
,
S. A.
,
Boucher
,
Y.
,
Jain
,
R. K.
, and
Munn
,
L. L.
,
2012
, “
Mechanical Compression Drives Cancer Cells Toward Invasive Phenotype
,”
Proc. Natl. Acad. Sci. U.S.A.
,
109
, pp.
911
916
.10.1073/pnas.1118910109
59.
Demou
,
Z. N.
,
2010
, “
Gene Expression Profiles in 3D Tumor Analogs Indicate Compressive Strain Differentially Enhances Metastatic Potential
,”
Ann. Biomed. Eng.
,
38
, pp.
3509
3520
.10.1007/s10439-010-0097-0
60.
Tan
,
J. L.
,
Tien
,
J.
,
Pirone
,
D. M.
,
Gray
,
D. S.
,
Bhadriraju
,
K.
, and
Chen
,
C. S.
,
2003
, “
Cells Lying on a Bed of Microneedles: An Approach to Isolate Mechanical Force
,”
Proc. Natl. Acad. Sci. U.S.A.
,
100
, pp.
1484
1489
.10.1073/pnas.0235407100
61.
Zheng
,
X. R.
, and
Zhang
,
X.
,
2011
, “
Microsystems for Cellular Force Measurement: A Review
,”
J. Micromech. Microeng.
,
21
, p.
054003
.10.1088/0960-1317/21/5/054003
62.
Legant
,
W. R.
,
Pathak
,
A.
,
Yang
,
M. T.
,
Deshpande
,
V. S.
,
McMeeking
,
R. M.
, and
Chen
,
C. S.
,
2009
, “
Microfabricated Tissue Gauges to Measure and Manipulate Forces From 3D Microtissues
,”
Proc. Natl. Acad. Sci. U.S.A.
,
106
, pp.
10097
10102
.10.1073/pnas.0900174106
63.
Sochol
,
R. D.
,
Higa
,
A. T.
,
Janairo
,
R. R. R.
,
Li
,
S.
, and
Lin
,
L. W.
,
2011
, “
Unidirectional Mechanical Cellular Stimuli Via Micropost Array Gradients
,”
Soft Matter
,
7
, pp.
4606
4609
.10.1039/c1sm05163f
64.
Polackwich
,
R. J.
,
Koch
,
D.
,
Arevalo
,
R.
,
Miermont
,
A. M.
,
Jee
,
K. J.
,
Lazar
,
J.
,
Urbach
,
J.
,
Mueller
,
S. C.
, and
McAllister
,
R. G.
,
2013
, “
A Novel 3D Fibril Force Assay Implicates SRC in Tumor Cell Force Generation in Collagen Networks
,”
PLoS One
,
8
, p.
e58138
.10.1371/journal.pone.0058138
65.
Legant
,
W. R.
,
Miller
,
J. S.
,
Blakely
,
B. L.
,
Cohen
,
D. M.
,
Genin
,
G. M.
, and
Chen
,
C. S.
,
2010
, “
Measurement of Mechanical Tractions Exerted by Cells in Three-Dimensional Matrices
,”
Nat. Methods
,
7
, pp.
969
U113
.10.1038/nmeth.1531
66.
Storm
,
C.
,
Pastore
,
J. J.
,
MacKintosh
,
F. C.
,
Lubensky
,
T. C.
, and
Janmey
,
P. A.
,
2005
, “
Nonlinear Elasticity in Biological Gels
,”
Nature
,
435
, pp.
191
194
.10.1038/nature03521
67.
Mocellin
,
S.
,
Wang
,
E.
, and
Marincola
,
F. M.
,
2001
, “
Cytokines and Immune Response in the Tumor Microenvironment
,”
J. Immunother.
,
24
, pp.
392
407
.10.1097/00002371-200109000-00002
68.
Sautes-Fridman
,
C.
,
Cherfils-Vicini
,
J.
,
Damotte
,
D.
,
Fisson
,
S.
,
Fridman
,
W. H.
,
Cremer
,
I.
, and
Dieu-Nosjean
,
M. C.
,
2011
, “
Tumor Microenvironment Is Multifaceted
,”
Cancer Met. Rev.
,
30
, pp.
13
25
.10.1007/s10555-011-9279-y
69.
Kim
,
B. J.
, and
Wu
,
M.
,
2012
, “
Microfluidics for Mammalian Cell Chemotaxis
,”
Ann. Biomed. Eng.
,
40
, pp.
1316
1327
.10.1007/s10439-011-0489-9
70.
Pluen
,
A.
,
Netti
,
P. A.
,
Jain
,
R. K.
, and
Berk
,
D. A.
,
1999
, “
Diffusion of Macromolecules in Agarose Gels: Comparison of Linear and Globular Configurations
,”
Biophys. J.
,
77
, pp.
542
552
.10.1016/S0006-3495(99)76911-0
71.
Jain
,
R. K.
,
2008
, “
Lessons From Multidisciplinary Translational Trials on Anti-Angiogenic Therapy of Cancer
,”
Nat. Rev. Cancer
,
8
, pp.
309
316
.10.1038/nrc2346
72.
Fischbach
,
C.
,
Kong
,
H. J.
,
Hsiong
,
S. X.
,
Evangelista
,
M. B.
,
Yuen
,
W.
, and
Mooney
,
D. J.
,
2009
, “
Cancer Cell Angiogenic Capability Is Regulated by 3D Culture and Integrin Engagement
,”
Proc. Natl. Acad. Sci. U.S.A.
,
106
, pp.
399
404
.10.1073/pnas.0808932106
73.
Muller
,
A.
,
Homey
,
B.
,
Soto
,
H.
,
Ge
,
N. F.
,
Catron
,
D.
,
Buchanan
,
M. E.
,
McClanahan
,
T.
,
Murphy
,
E.
,
Yuan
,
W.
,
Wagner
,
S. N.
,
Barrera
,
J. L.
,
Mohar
,
A.
,
Verástegui
,
E.
, and
Zlotnick
,
A.
,
2001
, “
Involvement of Chemokine Receptors in Breast Cancer Metastasis
,”
Nature
,
410
, pp.
50
56
.10.1038/35065016
74.
Boyden
,
S.
,
1962
, “
The Chemotactic Effect of Mixtures of Antibody and Antigen on Polymorphonuclear Leucocytes
,”
J. Exp. Med.
,
115
, pp.
453
466
.10.1084/jem.115.3.453
75.
Wyckoff
,
J.
,
Wang
,
W.
,
Lin
,
E. Y.
,
Wang
,
Y.
,
Pixley
,
F.
,
Stanley
,
E. R.
,
Graf
,
T.
,
Pollard
,
J. W.
,
Segall
,
J.
, and
Condeelis
,
J.
,
2004
, “
A Paracrine Loop Between Tumor Cells and Macrophages Is Required for Tumor Cell Migration in Mammary Tumors
,”
Cancer Res.
,
64
, pp.
7022
7029
.10.1158/0008-5472.CAN-04-1449
76.
Goswami
,
S.
,
Sahai
,
E.
,
Wyckoff
,
J. B.
,
Cammer
,
M.
,
Cox
,
D.
,
Pixley
,
F. J.
,
Stanley
,
E. R.
,
Segall
,
J. E.
, and
Condeelis
,
J. S.
,
2005
, “
Macrophages Promote the Invasion of Breast Carcinoma Cells Via a Colony-Stimulating Factor-1/Epidermal Growth Factor Paracrine Loop
,”
Cancer Res.
,
65
, pp.
5278
5283
.10.1158/0008-5472.CAN-04-1853
77.
Issa
,
A.
,
Le
,
T. X.
,
Shoushtari
,
A. N.
,
Shields
,
J. D.
, and
Swartz
,
M. A.
,
2009
, “
Vascular Endothelial Growth Factor-C and C-C Chemokine Receptor 7 in Tumor Cell-Lymphatic Cross-Talk Promote Invasive Phenotype
,”
Cancer Res.
,
69
, pp.
349
357
.10.1158/0008-5472.CAN-08-1875
78.
Mishra
,
P.
,
Banerjee
,
D.
, and
Ben-Baruch
,
A.
,
2011
, “
Chemokines at the Crossroads of Tumor-Fibroblast Interactions That Promote Malignancy
,”
J. Leuk Biol.
,
89
, pp.
31
39
.10.1189/jlb.0310182
79.
Dolznig
,
H.
,
Rupp
,
C.
,
Puri
,
C.
,
Haslinger
,
C.
,
Schweifer
,
N.
,
Wieser
,
E.
,
Kerjaschki
,
D.
, and
Garin-Chesa
,
P.
,
2011
, “
Modeling Colon Adenocarcinomas In Vitro a 3D Co-Culture System Induces Cancer-Relevant Pathways Upon Tumor Cell and Stromal Fibroblast Interaction
,”
Am. J. Pathol.
,
179
, pp.
487
501
.10.1016/j.ajpath.2011.03.015
80.
Ng
,
C. P.
, and
Swartz
,
M. A.
,
2005
, “
Fibroblast Alignment Under Interstitial Fluid Flow Using a Novel 3-D Tissue Culture Model
,”
Am. J. Physiol. Heart Circ. Physiol.
,
288
, pp.
H3016
H3016
.10.1152/ajpheart.00270.2005
81.
Huang
,
Y.
,
Agrawal
,
B.
,
Sun
,
D.
,
Kuo
,
J. S.
, and
Williams
,
J. C.
,
2011
, “
Microfluidics-Based Devices: New Tools for Studying Cancer and Cancer Stem Cell Migration
,”
Biomicrofluidics
,
5
, p.
13412
.10.1063/1.3555195
82.
Kerjaschki
,
D.
,
Bago-Horvath
,
Z.
,
Rudas
,
M.
,
Sexl
,
V.
,
Schneckenleithner
,
C.
,
Wolbank
,
S.
,
Bartel
,
G.
,
Krieger
,
S.
,
Kalt
,
R.
,
Hantusch
,
B.
,
Keller
,
T.
,
Nagy-Bojarszky
,
K.
,
Huttary
,
N.
,
Raab
,
I.
,
Lackner
,
K.
,
Krautgasser
,
K.
,
Schachner
,
H.
,
Kaserer
,
K.
,
Rezar
,
S.
,
Madlener
,
S.
,
Vonach
,
C.
,
Davidovits
,
A.
,
Nosaka
,
H.
,
Hämmerle
,
M.
,
Viola
,
K.
,
Dolznig
,
H.
,
Schreiber
,
M.
,
Nader
,
A.
,
Mikulits
,
W.
,
Gnant
,
M.
,
Hirakawa
,
S.
,
Detmar
,
M.
,
Alitalo
,
K.
,
Nijman
,
S.
,
Offner
,
F.
,
Maier
,
T. J.
,
Steinhilber
,
D.
, and
Krupitza
,
G.
,
2011
, “
Lipoxygenase Mediates Invasion of Intrametastatic Lymphatic Vessels and Propagates Lymph Node Metastasis of Human Mammary Carcinoma Xenografts in Mouse
,”
J. Clin. Invest.
,
121
, pp.
2000
2012
.10.1172/JCI44751
83.
Zheng
,
C. H.
,
Zhao
,
L.
,
Chen
,
G. E.
,
Zhou
,
Y.
,
Pang
,
Y. H.
, and
Huang
,
Y. Y.
,
2012
, “
Quantitative Study of the Dynamic Tumor-Endothelial Cell Interactions Through an Integrated Microfluidic Coculture System
,”
Anal. Chem.
,
84
, pp.
2088
2093
.10.1021/ac2032029
84.
Chan
,
J. M.
,
Zervantonakis
,
I. K.
,
Rimchala
,
T.
,
Polacheck
,
W. J.
,
Whisler
,
J.
, and
Kamm
,
R. D.
,
2012
, “
Engineering of In Vitro 3D Capillary Beds by Self-Directed Angiogenic Sprouting
,”
PLoS One
,
7
(12), p.
e50582
.
85.
Hielscher
,
A. C.
, and
Gerecht
,
S.
,
2012
, “
Engineering Approaches for Investigating Tumor Angiogenesis: Exploiting the Role of the Extracellular Matrix
,”
Cancer Res.
,
72
, pp.
6089
6096
.10.1158/0008-5472.CAN-12-2773
86.
Kim
,
S.
,
Lee
,
H.
,
Chung
,
M.
, and
Jeon
,
N. L.
,
2013
, “
Engineering of Functional, Perfusable 3D Microvascular Networks on a Chip
,”
Lab Chip
,
13
, pp.
1489
1500
.10.1039/c3lc41320a
87.
Jeon
,
J. S.
,
Zervantonakis
,
I. K.
,
Chung
,
S.
,
Kamm
,
R. D.
, and
Charest
,
J. L.
,
2013
, “
In Vitro Model of Tumor Cell Extravasation
,”
PLoS One
,
8
, p.
e56910
.10.1371/journal.pone.0056910
88.
Moya
,
M. L.
,
Hsu
,
Y. H.
,
Lee
,
A. P.
,
Hughes
,
C. C. W.
, and
George
,
S. C.
,
2013
, “
In Vitro Perfused Human Capillary Networks
,”
Tissue Eng. Part C
,
19
, pp.
730
737
.10.1089/ten.tec.2012.0430
89.
Yu
,
M.
,
Stott
,
S.
,
Toner
,
M.
,
Maheswaran
,
S.
, and
Haber
,
D. A.
,
2011
, “
Circulating Tumor Cells: Approaches to Isolation and Characterization
,”
J. Cell Biol.
,
192
, pp.
373
382
.10.1083/jcb.201010021
90.
Nagrath
,
S.
,
Sequist
,
L. V.
,
Maheswaran
,
S.
,
Bell
,
D. W.
,
Irimia
,
D.
,
Ulkus
,
L.
,
Smith
,
M. R.
,
Kwak
,
E. L.
,
Digumarthy
,
S.
,
Muzikansky
,
A.
,
Ryan
,
P.
,
Balis
,
U. J.
,
Tompkins
,
R. G.
,
Haber
,
D. A.
, and
Toner
,
M.
,
2007
, “
Isolation of Rare Circulating Tumour Cells in Cancer Patients by Microchip Technology
,”
Nature
,
450
, pp.
1235
U1210
.10.1038/nature06385
91.
Gleghorn
,
J. P.
,
Pratt
,
E. D.
,
Denning
,
D.
,
Liu
,
H.
,
Bander
,
N. H.
,
Tagawa
,
S. T.
,
Nanus
,
D. M.
,
Giannakakou
,
P. A.
, and
Kirby
,
B. J.
,
2010
, “
Capture of Circulating Tumor Cells From Whole Blood of Prostate Cancer Patients Using Geometrically Enhanced Differential Immunocapture (GEDI) and a Prostate-Specific Antibody
,”
Lab Chip
,
10
, pp.
27
29
.10.1039/b917959c
92.
Konstantopoulos
,
K.
, and
Thomas
,
S. N.
,
2009
, “
Cancer Cells in Transit: The Vascular Interactions of Tumor Cells
Annu. Rev. Biomed. Eng.
,
11
, pp.
177
202
.10.1146/annurev-bioeng-061008-124949
93.
Bevilacqua
,
M. P.
,
1993
, “
Endothelial-Leukocyte Adhesion Molecules
,”
Annu. Rev. Immunol.
,
11
, pp.
767
804
.10.1146/annurev.iy.11.040193.004003
94.
Laubli
,
H.
, and
Borsig
,
L.
,
2010
, “
Selectins Promote Tumor Metastasis
,”
Semin. Cancer Biol.
,
20
, pp.
169
177
.10.1016/j.semcancer.2010.04.005
95.
Shibue
,
T.
, and
Weinberg
,
R. A.
,
2011
, “
Metastatic Colonization: Settlement, Adaptation and Propagation of Tumor Cells in a Foreign Tissue Environment
,”
Semin. Cancer Biol.
,
21
, pp.
99
106
.10.1016/j.semcancer.2010.12.003
96.
Barthel
,
S. R.
,
Gavino
,
J. D.
,
Descheny
,
L.
, and
Dimitroff
,
C. J.
,
2007
, “
Targeting Selectins and Selectin Ligands in Inflammation and Cancer
,”
Expert Opin. Therap. Targets
,
11
, pp.
1473
1491
.10.1517/14728222.11.11.1473
97.
Witz
,
I. P.
,
2008
, “
The Selectin-Selectin Ligand Axis in Tumor Progression
,”
Cancer Metas. Rev.
,
27
, pp.
19
30
.10.1007/s10555-007-9101-z
98.
Kobayashi
,
H.
,
Boelte
,
K. C.
, and
Lin
,
P. C.
,
2007
, “
Endothelial Cell Adhesion Molecules and Cancer Progression
,”
Curr. Med. Chem.
14
, pp.
377
386
.10.2174/092986707779941032
99.
Reyes-Reyes
,
M. E.
,
George
,
M. D.
,
Roberts
,
J. D.
, and
Akiyama
,
S. K.
,
2006
, “
P-Selectin Activates Integrin-Mediated Colon Carcinoma Cell Adhesion to Fibronectin
,”
Exp. Cell Res.
,
312
, pp.
4056
4069
.10.1016/j.yexcr.2006.09.008
100.
McCarty
,
O. J. T.
,
Jadhav
,
S.
,
Burdick
,
M. M.
,
Bell
,
W. R.
, and
Konstantopoulos
,
K.
,
2002
, “
Fluid Shear Regulates the Kinetics and Molecular Mechanisms of Activation-Dependent Platelet Binding to Colon Carcinoma Cells
Biophys. J.
,
83
, pp.
836
848
.10.1016/S0006-3495(02)75212-0
101.
Burdick
,
M. M.
,
Bochner
,
B. S.
,
Collins
,
B. E.
,
Schnaar
,
R. L.
, and
Konstantopoulos
,
K.
,
2001
, “
Glycolipids Support E-Selectin-Specific Strong Cell Tethering Under Flow
,”
Biochem. Biophys. Res. Commun.
,
284
, pp.
42
49
.10.1006/bbrc.2001.4899
102.
Burdick
,
M. M.
,
Bochner
,
B. S.
, and
Konstantopoulos
,
K.
,
2002
, “
Relative Contributions of Glycolipids, Integrins, and Other Glycoproteins in LS174T Colon Carcinoma Cell Adhesion Under Dynamic Flow Conditions
,”
FASEB J.
,
16
, pp.
A1053
A1053
.
103.
Minn
,
A. J.
,
Kang
,
Y. B.
,
Serganova
,
I.
,
Gupta
,
G. P.
,
Giri
,
D. D.
,
Doubrovin
,
M.
,
Ponomarev
,
V.
,
Gerald
,
W. L.
,
Blasberg
,
R.
, and
Massague
,
J.
,
2005
, “
Distinct Organ-Specific Metastatic Potential of Individual Breast Cancer Cells and Primary Tumors
,”
J. Clin. Invest.
,
115
, pp.
44
55
.
104.
Mareel
,
M. M.
,
Vanroy
,
F. M.
, and
Bracke
,
M. E.
,
1993
, “
How and When Do Tumor Cells Metastasize?
,”
Crit. Rev. Oncogen.
,
4
, pp.
559
594
.
105.
Ben-Baruch
,
A.
,
2008
, “
Organ Selectivity in Metastasis: Regulation by Chemokines and Their Receptors
,”
Clin. Exp. Metas.
,
25
, pp.
345
356
.10.1007/s10585-007-9097-3
106.
Dittma
,
T.
,
Heyder
,
C.
,
Gloria-Maercker
,
E.
,
Hatzmann
,
W.
, and
Zanker
,
K. S.
,
2008
, “
Adhesion Molecules and Chemokines: The Navigation System for Circulating Tumor (Stem) Cells to Metastasize in an Organ-Specific Manner
,”
Clin. Exp. Metas
,
25
, pp.
11
32
.10.1007/s10585-007-9095-5
107.
Pathi
,
S. P.
,
Kowalczewski
,
C.
,
Tadipatri
,
R.
, and
Fischbach
,
C.
,
2010
, “
A Novel 3-D Mineralized Tumor Model to Study Breast Cancer Bone Metastasis
,”
PLoS One
,
5
, p.
e8849
.10.1371/journal.pone.0008849
You do not currently have access to this content.