As the next step in our investigations into the structural adaptations of the main pulmonary artery (PA) during postnatal growth, we utilized the extensive experimental measurements of the growing ovine PA from our previous study (Fata et al., 2013, “Estimated in vivo Postnatal Surface Growth Patterns of the Ovine Main Pulmonary Artery and Ascending Aorta,” J. Biomech. Eng., 135(7), pp. 71010–71012). to develop a structural constitutive model for the PA wall tissue. Novel to the present approach was the treatment of the elastin network as a distributed fiber network rather than a continuum phase. We then utilized this model to delineate structure-function differences in the PA wall at the juvenile and adult stages. Overall, the predicted elastin moduli exhibited minor differences remained largely unchanged with age and region (in the range of 150 to 200 kPa). Similarly, the predicted collagen moduli ranged from ∼1,600 to 2700 kPa in the four regions studied in the juvenile state. Interestingly, we found for the medial region that the elastin and collagen fiber splay underwent opposite changes (collagen standard deviation juvenile = 17 deg to adult = 28 deg, elastin standard deviation juvenile = 35 deg to adult = 27 deg), along with a trend towards more rapid collagen fiber strain recruitment with age, along with a drop in collagen fiber moduli, which went from 2700 kPa for the juvenile stage to 746 kPa in the adult. These changes were likely due to the previously observed impingement of the relatively stiff ascending aorta on the growing PA medial region. Intuitively, the effects of the local impingement would be to lower the local wall stress, consistent with the observed parallel decrease in collagen modulus. These results suggest that during the postnatal somatic growth period local stresses can substantially modulate regional tissue microstructure and mechanical behaviors in the PA. We further underscore that our previous studies indicated an increase in effective PA wall stress with postnatal maturation. When taken together with the fact that the observed changes in mechanical behavior and structure in the growing PA wall were modest in the other three regions studied, our collective results suggest that the majority of the growing PA wall is subjected to increasing stress levels with age without undergoing major structural adaptations. This observation is contrary to the accepted theory of maintenance of homeostatic stress levels in the regulation of vascular function, and suggests alternative mechanisms might regulate postnatal somatic growth. Understanding the underlying mechanisms will help to improve our understanding of congenital defects of the PA and lay the basis for functional duplication in their repair and replacement.

References

References
1.
Kogon
,
B. E.
,
Patel
,
M.
,
Pernetz
,
M.
,
Mcconnell
,
M.
, and
Book
,
W.
,
2009
, “
Late Pulmonary Valve Replacement in Congenital Heart Disease Patients Without Original Congenital Pulmonary Valve Pathology
,”
Pediatr. Cardiol.
,
31
(
1
), pp.
74
79
.10.1007/s00246-009-9574-3
2.
Ono
,
M.
,
Goerler
,
H.
,
Kallenbach
,
K.
,
Boethig
,
D.
,
Westhoff-Bleck
,
M.
, and
Breymann
,
T.
,
2007
, “
Aortic Valve-Sparing Reimplantation for Dilatation of the Ascending Aorta and Aortic Regurgitation Late After Repair of Congenital Heart Disease
,”
J. Thorac. Cardiovasc. Surg.
,
133
(
4
), pp.
876
879
.10.1016/j.jtcvs.2006.10.055
3.
Rosenberg
,
H. G.
,
Williams
,
W. G.
,
Trusler
,
G. A.
,
Higa
,
T.
, and
Rabinovitch
,
M.
,
1987
, “
Structural Composition of Central Pulmonary Arteries. Growth Potential After Surgical Shunts
,”
J. Thorac. Cardiovasc. Surg.
,
94
(
4
), pp.
498
503
.
4.
Mayer
,
J. E.
, Jr.
,
1995
, “
Uses of Homograft Conduits for Right Ventricle to Pulmonary Artery Connections in the Neonatal Period
,”
Semin. Thorac. Cardiovasc. Surg.
,
7
(
3
), pp.
130
132
.
5.
Cho
,
S. W.
,
Kim
,
I. K.
,
Kang
,
J. M.
,
Song
,
K. W.
,
Kim
,
H. S.
,
Park
,
C. H.
,
Yoo
,
K. J.
, and
Kim
,
B. S.
,
2009
, “
Evidence for in vivo Growth Potential and Vascular Remodeling of Tissue-Engineered Artery
,”
Tissue Eng. Part A
,
15
(
4
), pp.
901
912
.10.1089/ten.tea.2008.0172
6.
Hoerstrup
,
S. P.
,
Cummings Mrcs
,
I.
,
Lachat
,
M.
,
Schoen
,
F. J.
,
Jenni
,
R.
,
Leschka
,
S.
,
Neuenschwander
,
S.
,
Schmidt
,
D.
,
Mol
,
A.
,
Gunter
,
C.
,
Gossi
,
M.
,
Genoni
,
M.
, and
Zund
,
G.
,
2006
, “
Functional Growth in Tissue-Engineered Living, Vascular Grafts: Follow-up at 100 Weeks in a Large Animal Model
,”
Circulation
,
114
(
1
), pp.
I159
I166
.10.1161/CIRCULATIONAHA.105.001172
7.
Shinoka
,
T.
,
Shum-Tim
,
D.
,
Ma
,
P. X.
,
Tanel
,
R. E.
,
Isogai
,
N.
,
Langer
,
R.
,
Vacanti
,
J. P.
, and
Mayer
,
J. E.
, Jr.
,
1998
, “
Creation of Viable Pulmonary Artery Autografts Through Tissue Engineering
,”
J. Thorac. Cardiovasc. Surg.
,
115
(
3
), pp.
536
546
.10.1016/S0022-5223(98)70315-0
8.
Mol
,
A.
,
Smits
,
A. I.
,
Bouten
,
C. V.
, and
Baaijens
,
F. P.
,
2009
, “
Tissue Engineering of Heart Valves: Advances and Current Challenges
,”
Expert Rev. Med. Devices
,
6
(
3
), pp.
259
275
.10.1586/erd.09.12
9.
Wang
,
Z.
, and
Chesler
,
N. C.
,
2011
, “
Pulmonary Vascular Wall Stiffness: An Important Contributor to the Increased Right Ventricular Afterload With Pulmonary Hypertension
,”
Pulmonary Circulation
,
1
(
2
), pp.
212
223
.10.4103/2045-8932.83453
10.
Ooi
,
C. Y.
,
Wang
,
Z.
,
Tabima
,
D. M.
,
Eickhoff
,
J. C.
, and
Chesler
,
N. C.
,
2010
, “
The Role of Collagen in Extralobar Pulmonary Artery Stiffening in Response to Hypoxia-Induced Pulmonary Hypertension
,”
Am. J. Physiol. Heart Circ. Physiol.
,
299
(
6
), pp.
H1823
H1831
.10.1152/ajpheart.00493.2009
11.
Poiani
,
G. J.
,
Tozzi
,
C. A.
,
Yohn
,
S. E.
,
Pierce
,
R. A.
,
Belsky
,
S. A.
,
Berg
,
R. A.
,
Yu
,
S. Y.
,
Deak
,
S. B.
, and
Riley
,
D. J.
,
1990
, “
Collagen and Elastin Metabolism in Hypertensive Pulmonary Arteries of Rats
,”
Circ. Res.
,
66
(
4
), pp.
968
978
.10.1161/01.RES.66.4.968
12.
Leung
,
D. Y. M.
,
Glagov
,
S.
, and
Mathews
,
M. B.
,
1977
, “
Elastin and Collagen Accumulation in Rabbit Ascending Aorta and Pulmonary Trunk During Postnatal Growth. Correlation of Cellular Synthetic Response With Medial Tension
,”
Circ. Res.
,
41
(
3
), pp.
316
323
.10.1161/01.RES.41.3.316
13.
Langille
,
B. L.
,
Brownlee
,
R. D.
, and
Adamson
,
S. L.
,
1990
, “
Perinatal Aortic Growth in Lambs: Relation to Blood Flow Changes at Birth
,”
Am. J. Physiol.
,
259
(
28
), pp.
H1247
H1253
.
14.
Tucker
,
A.
,
Migally
,
N.
,
Wright
,
M. L.
, and
Greenlees
,
K. J.
,
1984
, “
Pulmonary Vascular Changes in Young and Aging Rats Exposed to 5,486 M Altitude
,”
Respiration
,
46
(
3
), pp.
246
257
.10.1159/000194696
15.
Lammers
,
S. R.
,
Kao
,
P. H.
,
Qi
,
H. J.
,
Hunter
,
K.
,
Lanning
,
C.
,
Albietz
,
J.
,
Hofmeister
,
S.
,
Mecham
,
R.
,
Stenmark
,
K. R.
, and
Shandas
,
R.
,
2008
, “
Changes in the Structure-Function Relationship of Elastin and its Impact on the Proximal Pulmonary Arterial Mechanics of Hypertensive Calves
,”
Am. J. Physiol. Heart Circ. Physiol.
,
295
(
4
), pp.
H1451
H1459
.10.1152/ajpheart.00127.2008
16.
Mceniery
,
C. M.
,
Wilkinson
,
I. B.
, and
Avolio
,
A. P.
,
2007
, “
Age, Hypertension, and Arterial Function
,”
Clin. Exp. Pharmacol. Physiol.
,
34
(
7
), pp.
665
671
.10.1111/j.1440-1681.2007.04657.x
17.
Schwartz
,
C. J.
,
Valente
,
A. J.
,
Sprague
,
E. A.
,
Kelley
,
J. L.
, and
Nerem
,
R. M.
,
1991
, “
The Pathogenesis of Atherosclerosis: An Overview
,”
Clin. Cardiol.
,
14
(
2
), pp.
I1
16
.10.1002/clc.4960141302
18.
Fata
,
B.
,
Gottlieb
,
D.
,
Mayer
,
J. E.
, and
Sacks
,
M. S.
,
2013
, “
Estimated In Vivo Postnatal Surface Growth Patterns of the Ovine Main Pulmonary Artery and Ascending Aorta
,”
ASME J. Biomech. Eng.
,
135
(
7
), p.
071010
.10.1115/1.4024619
19.
Gottlieb
,
D.
,
Fata
,
B.
,
Powell
,
A. J.
,
Cois
,
C. A.
,
Annese
,
D.
,
Tandon
,
K.
,
Stetten
,
G.
,
Mayer
,
J. E.
, Jr.
, and
Sacks
,
M. S.
,
2013
, “
Pulmonary Artery Conduit In Vivo Dimensional Requirements in a Growing Ovine Model: Comparisons With the Ascending Aorta
,”
J. Heart Valve Dis.
,
22
(
2
), pp.
195
203
.
20.
Fata
,
B.
,
Carruthers
,
C. A.
,
Gibson
,
G.
,
Watkins
,
S. C.
,
Gottlieb
,
D.
,
Mayer
,
J. E.
, and
Sacks
,
M. S.
,
2013
, “
Regional Structural and Biomechanical Alterations of the Ovine Main Pulmonary Artery During Postnatal Growth
,”
ASME J. Biomech. Eng.
,
135
(
2
), p.
021022
.10.1115/1.4023389
21.
Tozzi
,
C. A.
,
Christiansen
,
D. L.
,
Poiani
,
G. J.
, and
Riley
,
D. J.
,
1994
, “
Excess Collagen in Hypertensive Pulmonary Arteries Decreases Vascular Distensibility
,”
Am. J. Respir. Crit. Care Med.
,
149
(
5
), pp.
1317
1326
.10.1164/ajrccm.149.5.8173773
22.
Hollander
,
Y.
,
Durban
,
D.
,
Lu
,
X.
,
Kassab
,
G. S.
, and
Lanir
,
Y.
,
2011
, “
Constitutive Modeling of Coronary Arterial Media–Comparison of Three Model Classes
,”
ASME J. Biomech. Eng.
,
133
(
6
), p.
061008
.10.1115/1.4004249
23.
Hansen
,
L.
,
Wan
,
W.
, and
Gleason
,
R. L.
,
2009
, “
Microstructurally Motivated Constitutive Modeling of Mouse Arteries Cultured Under Altered Axial Stretch
,”
ASME J. Biomech. Eng.
,
131
(
10
), p.
101015
.10.1115/1.3207013
24.
Hunter
,
K. S.
,
Lanning
,
C. J.
,
Chen
,
S. Y.
,
Zhang
,
Y.
,
Garg
,
R.
,
Ivy
,
D. D.
, and
Shandas
,
R.
,
2006
, “
Simulations of Congenital Septal Defect Closure and Reactivity Testing in Patient-Specific Models of the Pediatric Pulmonary Vasculature: A 3D Numerical Study With Fluid-Structure Interaction
,”
ASME J. Biomech. Eng.
,
128
(
4
), pp.
564
572
.10.1115/1.2206202
25.
Zhang
,
Y.
,
Dunn
,
M. L.
,
Hunter
,
K. S.
,
Lanning
,
C.
,
Ivy
,
D. D.
,
Claussen
,
L.
,
Chen
,
S. J.
, and
Shandas
,
R.
,
2007
, “
Application of a Microstructural Constitutive Model of the Pulmonary Artery to Patient-Specific Studies: Validation and Effect of Orthotropy
,”
ASME J. Biomech. Eng.
,
129
(
2
), pp.
193
201
.10.1115/1.2485780
26.
Kao
,
P. H.
,
Lammers
,
S.
,
Tian
,
L.
,
Hunter
,
K.
,
Stenmark
,
K. R.
,
Shandas
,
R.
, and
Qi
,
H. J.
,
2011
, “
A Microstructurally Driven Model for Pulmonary Artery Tissue
,”
ASME J. Biomech. Eng.
,
133
(
5
), p.
051002
.10.1115/1.4002698
27.
Zulliger
,
M. A.
,
Rachev
,
A.
, and
Stergiopulos
,
N.
,
2004
, “
A Constitutive Formulation of Arterial Mechanics Including Vascular Smooth Muscle Tone
,”
Am. J. Physiol. Heart Circ. Physiol.
,
287
(
3
), pp.
H1335
H1343
.10.1152/ajpheart.00094.2004
28.
Lanir
,
Y.
1983
, “
Constitutive Equations for Fibrous Connective Tissues
,”
J. Biomech.
,
16
, pp.
1
12
.10.1016/0021-9290(83)90041-6
29.
Fung
,
Y. C.
,
1993
,
Biomechanics: Mechanical Properties of Living Tissues
,
Springer Verlag
,
New York
.
30.
Sacks
,
M. S.
,
2003
, “
Incorporation of Experimentally-Derived Fiber Orientation Into a Structural Constitutive Model for Planar Collagenous Tissues
,”
ASME J. Biomech. Eng.
,
125
(
2
), pp.
280
287
.10.1115/1.1544508
31.
Smith
,
D. B.
,
Sacks
,
M. S.
,
Vorp
,
D. A.
, and
Thornton
,
M.
,
2000
, “
Surface Geometric Analysis of Anatomic Structures Using Biquintic Finite Element Interpolation
,”
Ann. Biomed. Eng.
,
28
(
6
), pp.
598
611
.10.1114/1.1306342
32.
Sacks
,
M. S.
,
2000
, “
A Structural Constitutive Model for Chemically Treated Planar Connective Tissues Under Biaxial Loading
,”
Comput. Mech.
,
26
(
3
), pp.
243
249
.10.1007/s004660000175
33.
Humphrey
,
J. D.
,
2009
, “
Vascular Mechanics, Mechanobiology, and Remodeling
,”
J. Mech. Med. Biol.
,
9
(
2
), pp.
243
257
.10.1142/S021951940900295X
34.
Ambrosi
,
D.
,
Ateshian
,
G. A.
,
Arruda
,
E. M.
,
Cowin
,
S. C.
,
Dumais
,
J.
,
Goriely
,
A.
,
Holzapfel
,
G. A.
,
Humphrey
,
J. D.
,
Kemkemer
,
R.
,
Kuhl
,
E.
,
Olberding
,
J. E.
,
Taber
,
L. A.
, and
Garikipati
,
K.
,
2011
, “
Perspectives on Biological Growth and Remodeling
,”
J. Mech. Phys. Solids
,
59
(
4
), pp.
863
883
.10.1016/j.jmps.2010.12.011
35.
Gasser
,
T. C.
,
Ogden
,
R. W.
, and
Holzapfel
,
G. A.
,
2006
, “
Hyperelastic Modelling of Arterial Layers With Distributed Collagen Fibre Orientations
,”
J. R. Soc., Interface
,
3
(
6
), pp.
15
35
.10.1098/rsif.2005.0073
36.
Zulliger
,
M. A.
,
Fridez
,
P.
,
Hayashi
,
K.
, and
Stergiopulos
,
N.
,
2004
, “
A Strain Energy Function for Arteries Accounting for Wall Composition and Structure
,”
J. Biomech.
,
37
(
7
), pp.
989
1000
.10.1016/j.jbiomech.2003.11.026
37.
Lillie
,
M. A.
,
Shadwick
,
R. E.
, and
Gosline
,
J. M.
,
2010
, “
Mechanical Anisotropy of Inflated Elastic Tissue from the Pig Aorta
,”
J. Biomech.
,
43
(
11
), pp.
2070
2078
.10.1016/j.jbiomech.2010.04.014
38.
Sherebrin
,
M. H.
,
Song
,
S. H.
, and
Roach
,
M. R.
,
1983
, “
Mechanical Anisotropy of Purified Elastin from the Thoracic Aorta of Dog and Sheep
,”
Can. J. Physiol. Pharmacol.
,
61
, pp.
539
545
.10.1139/y83-083
39.
Ogden
,
R. W.
, and
Saccomandi
,
G.
,
2007
, “
Introducing Mesoscopic Information Into Constitutive Equations for Arterial Walls
,”
Biomech. Modeling Mechanobiol.
,
6
(
5
), pp.
333
344
.10.1007/s10237-006-0064-8
40.
Zou
,
Y.
, and
Zhang
,
Y.
,
2009
, “
An Experimental and Theoretical Study on the Anisotropy of Elastin Network
,”
Ann. Biomed. Eng.
,
37
(
8
), pp.
1572
1583
.10.1007/s10439-009-9724-z
41.
Bischoff
,
J. E.
,
Arruda
,
E. M.
, and
Grosh
,
K.
,
2002
, “
A Microstructurally Based Orthotropic Hyperelastic Constitutive Law
,”
ASME J. Appl. Mech.
,
69
(
5
), pp.
570
579
.10.1115/1.1485754
42.
Mithieux
,
S. M.
, and
Weiss
,
A. S.
,
2005
, “
Elastin
,”
Adv. Protein Chem.
,
70
, pp.
437
461
.10.1016/S0065-3233(05)70013-9
43.
Roccabianca
,
S.
,
Ateshian
,
G. A.
, and
Humphrey
,
J. D.
,
2013
, “
Biomechanical Roles of Medial Pooling of Glycosaminoglycans in Thoracic Aortic Dissection
,”
Biomech. Model Mechanobiol.
,
13
(1), pp. 13–25.10.1007/s10237-013-0482-3
44.
Hill
,
M. R.
,
Duan
,
X.
,
Gibson
,
G. A.
,
Watkins
,
S.
, and
Robertson
,
A. M.
,
2012
, “
A Theoretical and Non-Destructive Experimental Approach for Direct Inclusion of Measured Collagen Orientation and Recruitment into Mechanical Models of the Artery Wall
,”
J. Biomech.
,
45
(
5
), pp.
762
771
.10.1016/j.jbiomech.2011.11.016
You do not currently have access to this content.