Effectively addressing population-level variability within orthopedic analyses requires robust data sets that span the target population and can be greatly facilitated by statistical methods for incorporating such data into functional biomechanical models. Data sets continue to be disseminated that include not just anatomical information but also key mechanical data including tissue or joint stiffness, gait patterns, and other inputs relevant to analysis of joint function across a range of anatomies and physiologies. Statistical modeling can be used to establish correlations between a variety of structural and functional biometrics rooted in these data and to quantify how these correlations change from health to disease and, finally, to joint reconstruction or other clinical intervention. Principal component analysis provides a basis for effectively and efficiently integrating variability in anatomy, tissue properties, joint kinetics, and kinematics into mechanistic models of joint function. With such models, bioengineers are able to study the effects of variability on biomechanical performance, not just on a patient-specific basis but in a way that may be predictive of a larger patient population. The goal of this paper is to demonstrate the broad use of statistical modeling within orthopedics and to discuss ways to continue to leverage these techniques to improve biomechanical understanding of orthopedic systems across populations.

References

References
1.
Bookstein
,
F. L.
,
1978
,
The Measurement of Biological Shape and Shape Change. Number 24 in Lecture Notes in Biomathematics
,
Springer-Verlag
,
New York
.
2.
Bookstein
,
F. L.
,
1986
, “
Size and Shape Spaces for Landmark Data in Two Dimensions (With Discussion)
,”
Stat. Sci.
,
1
(
2
), pp.
181
242
.10.1214/ss/1177013696
3.
Kendall
,
D. G.
,
1977
, “
The Diffusion of Shape
,”
Adv. Appl. Probab.
,
9
, pp.
428
430
.10.2307/1426091
4.
Kendall
,
D. G.
,
1984
, “
Shape Manifolds, Procrustean Metrics, and Complex Projective Spaces
,”
Bull. London Math. Soc.
,
16
, pp.
18
121
.
5.
Cootes
,
T. F.
,
Taylor
,
C. J.
,
Cooper
,
D. H.
, and
Graham
,
J.
,
1995
, “
Active Shape Models-Their Training and Application
,”
Comput. Vis. Image Underst.
,
61
(
1
), pp.
38
59
.10.1006/cviu.1995.1004
6.
Kazhdan
,
M.
,
Funkhouser
,
T.
, and
Rusinkiewicz
,
S.
,
2003
, “
Rotation Invariant Spherical Harmonic Representation of 3D Shape Descriptors
,”
Proceedings of the Eurographics Symposium on Geometry Processing
.
7.
Gerig
,
G.
,
Styner
,
M.
,
Jones
,
D.
,
Weinberger
,
D.
, and
Lieberman
,
J.
,
2001
, “
Shape Analysis of Brain Ventricles Using SPHARM
,”
Proceedings of the IEEE Workshop on Mathematical Methods in Biomedical Image Analysis
, pp.
171
178
.
8.
Joshi
,
S.
,
Pizer
,
S.
,
Fletcher
,
P. T.
,
Yushkevich
,
P.
,
Thall
,
A.
, and
Marron
J. S.
,
2002
, “
Multiscale Deformable Model Segmentation and Statistical Shape Analysis Using Medial Descriptions
,”
IEEE Trans. Med. Imaging
,
21
(
5
), pp.
538
550
.10.1109/TMI.2002.1009389
9.
Miller
,
M.
,
Banerjee
,
A.
,
Christensen
,
G.
,
Joshi
,
S.
,
Khaneja
,
N.
,
Grenander
,
U.
, and
Matejic
,
L.
,
1997
, “
Statistical Methods in Computational Anatomy
,”
Stat. Methods Med. Res.
,
6
, pp.
267
299
.10.1191/096228097673360480
10.
Dryden
,
I. L.
, and
Mardia
,
K. V.
,
1998
,
Statistical Shape Analysis
,
Wiley
,
New York
.
11.
Heimann
,
T.
, and
Meinzer
,
H. P.
,
2009
, “
Statistical Shape Models for 3D Medical Image Segmentation: A Review
,”
Med. Image Anal.
,
13
(
4
), pp.
543
563
.10.1016/j.media.2009.05.004
12.
Merck
,
D.
,
Tracton
,
G.
,
Saboo
,
R.
,
Levy
,
J.
,
Chaney
,
E.
,
Pizer
,
S.
, and
Joshi
,
S.
,
2008
, “
Training Models of Anatomic Shape Variability
,”
Med. Phys.
,
35
(
8
), pp.
3584
3596
.10.1118/1.2940188
13.
Gerig
,
G.
,
Styner
,
M.
, and
Szekely
,
G.
,
2002
, “
Statistical Shape Models for Segmentation and Structural Analysis
,”
Proceedings of the IEEE International Symposium on Biomedical Imaging
.
14.
Thompson
,
P. M.
,
Cannon
,
T. D.
,
Narr
,
K. L.
,
Erp
,
T.
,
Poutanen
,
V.-P.
,
Huttunen
,
M.
,
Lonnqvist
,
J.
,
Standertskjold-Nordenstam
,
C.-G.
,
Kaprio
,
J.
,
Khaledy
,
M.
,
Dail
,
R.
,
Zoumalan
,
C. I.
, and
Toga
A. W.
,
2001
, “
Genetic Influences on Brain Structure
,”
Nat. Neurosci.
,
4
(
12
), pp.
1253
1258
.10.1038/nn758
15.
Tagare
H.
,
1999
, “
Shape-Based Nonrigid Correspondence With Application to Heart Motion Analysis
,”
IEEE Trans. Med. Imaging
,
18
(
7
), pp.
570
579
.10.1109/42.790457
16.
Bullitt
,
E.
,
Gerig
,
G.
,
Pizer
,
S. M.
,
Lin
,
W.
, and
Aylward
S. R.
,
2003
, “
Measuring Tortuosity of the Intracerebral Vasculature From MRA Images
,”
IEEE Trans. Med. Imaging
,
22
(
9
), pp.
1163
1171
.10.1109/TMI.2003.816964
17.
Pierce
,
S. E.
,
Angielczyk
,
K. D.
, and
Rayfield
,
E. J.
,
2008
, “
Patterns of Morphospace Occupation and Mechanical Performance in Extant Crocodilian Skulls: A Combined Geometric Morphometric and Finite Element Modeling Approach
,”
J. Morphol.
,
269
, pp.
840
864
.10.1002/jmor.10627
18.
Harvati
,
K.
,
2003
, “
Quantitative Analysis of Neanderthal Temporal Bone Morphology Using Three-Dimensional Geometric Morphometrics
,”
Am. J. Phys. Anthropol.
,
120
(
4
), pp.
323
338
.10.1002/ajpa.10122
19.
Lockwood
,
C. A.
,
Lynch
,
J. M.
, and
Kimbel
,
W. H.
,
2002
, “
Quantifying Temporal Bone Morphology of Great Apes and Humans: An Approach Using Geometric Morphometrics
,”
J. Anat.
,
201
, pp.
447
464
.10.1046/j.1469-7580.2002.00122.x
20.
Jungers
,
W. L.
,
Falsetti
,
A. B.
, and
Wall
,
C. E.
,
1995
, “
Shape, Relative Size, and Size-Adjustments in Morphometrics
,”
Am. J. Phys. Anthropol.
,
38
(S
2
), pp.
137
161
.10.1002/ajpa.1330380608
21.
Gonzalez
,
P. N.
,
Bernal
,
V.
, and
Perez
,
S. I.
,
2009
, “
Geometric Morphometric Approach to Sex Estimation of Human Pelvis
,”
Forensic Sci. Int.
,
189
(
1–3
), pp.
68
74
.10.1016/j.forsciint.2009.04.012
22.
Mahfouz
,
M.
,
Badawi
,
A.
,
Merkl
,
B.
,
Abdel Fatah
,
E. E.
,
Pritchard
,
E.
,
Kesler
,
K.
,
Moore
,
M.
,
Jantz
,
R.
, and
Jantz
,
L.
,
2007
, “
Patella Sex Determination by 3D Statistical Shape Models and Nonlinear Classifiers
,”
Forensic Sci. Int.
,
173
(
2–3
), pp.
161
170
.10.1016/j.forsciint.2007.02.024
23.
Turner
,
W. D.
,
Brown
,
R. E. B.
,
Kelliher
,
T. P.
,
Tu
,
P. H.
,
Taister
,
M. A.
, and
Miller
,
K. W. P.
,
2005
, “
A Novel Method of Automated Skull Registration for Forensic Facial Approximation
,”
Forensic Sci. Int.
,
154
(
2–3
), pp.
149
158
.10.1016/j.forsciint.2004.10.003
24.
Milne
,
N.
,
1990
, “
Sexing of Human Hip Bones
,”
J. Anat.
,
172
, pp.
221
226
.
25.
Kendall
,
D. G.
,
Dryden
, I
. L.
, and
Mardia
,
K. V.
,
1998
,
Statistical Shape Analysis
,
Wiley
,
New York
.
26.
Sezgin
,
M.
, and
Sankur
,
B.
,
2004
, “
Survey Over Image Thresholding Techniques and Quantitative Performance Evaluation
,”
J. Electron. Imaging
,
13
(
1
), pp.
146
165
.10.1117/1.1631315
27.
Adam
,
R.
, and
Bischof
,
L.
,
1994
, “
Seeded Region Growing
,”
IEEE Trans. Pattern Anal. Mach. Intell.
,
16
(
6
), pp.
641
647
.10.1109/34.295913
28.
Davies
,
R. H.
,
Twining
,
C. J.
,
Cootes
,
T. F.
,
Waterton
,
J. C.
, and
Taylor
,
C. J.
,
2002
, “
A Minimum Description Length Approach to Statistical Shape Modeling
,”
IEEE Trans. Med. Imaging
,
21
, pp.
525
537
.10.1109/TMI.2002.1009388
29.
Cates
,
J.
,
Fletcher
,
P. T.
,
Styner
,
M.
,
Shenton
,
M.
, and
Whitaker
,
R. T.
,
2007
, “
Shape Modeling and Analysis With Entropy-Based Particle Systems
,”
Inf. Process. Med. Imaging
,
4584
, pp.
333
345
.10.1007/978-3-540-73273-0
30.
Styner
,
M. A.
,
Rajamani
,
K. T.
,
Nolte
,
L. P.
,
Zsemlye
,
G.
,
Székely
,
G.
,
Taylor
,
C. J.
and
Davies
,
R. H.
,
2003
, “
Evaluation of 3D Correspondence Methods for Model Building
,”
Inf. Process. Med. Imaging
,
2732
, pp.
63
75
.10.1007/b11820
31.
Sigal
,
I. A.
,
Hardisty
,
M. R.
, and
Whyne
,
C. M.
,
2008
, “
Mesh-Morphing Algorithms for Specimen-Specific Finite Element Modeling
,”
J. Biomech.
,
41
, pp.
1381
1389
.10.1016/j.jbiomech.2008.02.019
32.
Thompson
,
P. M.
,
Giedd
,
J. N.
,
Woods
,
R. P.
,
MacDonald
,
D.
,
Evans
,
A. C.
, and
Toga
,
A. W.
,
2000
, “
Growth Patterns in the Developing Brain Detected by Using Continuum Mechanical Tensor Maps
,”
Nature
,
404
(
6774
), pp.
190
193
.10.1038/35004593
33.
Gorczowski
,
K.
,
Styner
,
M.
,
Jeong
,
J. Y.
,
Marron
,
J. S.
,
Pvien
,
J.
,
Hazlett
,
H. C.
,
Pizer
,
S. M.
, and
Gerig
,
G.
,
2010
, “
Multi-Object Analysis of Volume, Pose, and Shape Using Statistical Discrimination
,”
IEEE Trans. Pattern Anal. Mach. Intell.
,
32
(
4
), pp.
652
661
.10.1109/TPAMI.2009.92
34.
Bryan
,
R.
,
Mohan
,
P. S.
,
Hopkins
,
A.
,
Galloway
,
F.
,
Taylor
,
M.
, and
Nair
,
P. B.
,
2010
, “
Statistical Modelling of the Whole Human Femur Incorporating Geometric and Material Properties
,”
Med. Eng. Phys.
,
32
, pp.
57
65
.10.1016/j.medengphy.2009.10.008
35.
Rajamani
,
K. T.
,
Talib
,
H.
,
Styner
,
M. A.
, and
Ballester
,
M. A. G.
,
2005
, “
Evaluation and Initial Validation Studies of Anatomical Structure Morphing
,”
Conf. Proc. IEEE Eng. Med. Biol. Soc.
,
3
, pp.
3276
3279
.
36.
Chan
,
E. F.
,
Farnsworth
,
C. L.
,
Koziol
,
J. A.
,
Hosalkar
,
H. S.
, and
Sah
,
R. L.
,
2013
, “
Statistical Shape Modeling of Proximal Femoral Shape Deformities in Legg-Calvé-Perthes Disease and Slipped Capital Femoral Epiphysis
,”
Osteoarthritis Cartilage
,
21
, pp.
443
449
.10.1016/j.joca.2012.12.007
37.
Mahfouz
,
M. R.
,
Merkl
,
B. C.
,
Abdel Fatah
,
E. E.
,
Booth
,
R.
, Jr.
, and
Argenson
,
J. N.
,
2007
, “
Automatic Methods for Characterization of Sexual Dimorphism of Adult Femora: Distal Femur
,”
Comput. Methods Biomech. Biomed. Eng.
,
10
(
6
), pp.
447
456
.10.1080/10255840701552093
38.
Bredbenner
,
T. L.
,
Eliason
,
T. D.
,
Potter
,
R. S.
,
Mason
,
R. L.
,
Havill
,
L. M.
, and
Nicolella
,
D. P.
,
2010
, “
Statistical Shape Modeling Describes Variation in Tibia and Femur Surface Geometry Between Control and Incidence Groups From the Osteoarthritis Initiative Database
,”
J. Biomech.
,
43
, pp.
1780
1786
.10.1016/j.jbiomech.2010.02.015
39.
Heimann
,
T.
,
Oguz
,
I.
,
Wolf
,
I.
,
Styner
,
M.
, and
Meinzer
,
H. P.
,
2006
, “
Implementing the Automatic Generation of 3D Statistical Shape Models With ITK
,”
The Insight Journal—MICCAI Open Science Workshop
, Copenhagen, Oct. 1, 2006.
40.
Fitzpatrick
,
C. K.
,
Fitzpatrick
,
D. P.
, and
Auger
,
D. D.
,
2008
, “
Size and Shape of the Resection Surface Geometry of the Osteoarthritic Knee in Relation to Total Knee Replacement Design
,”
Proc. Inst. Mech. Eng., Part H: J. Eng. Med.
,
222
, pp.
923
932
.10.1243/09544119JEIM332
41.
Dai
,
Y.
, and
Bischoff
,
J. E.
,
2013
, “
Comprehensive Assessment of Tibial Plateau Morphology in Total Knee Arthroplasty: Influence of Shape and Size on Anthropometric Variability
,”
J. Orthop. Res.
,
31
, pp.
1643
1652
.10.1002/jor.22410
42.
Kass
,
M.
,
Witkin
,
A.
, and
Terzopoulos
,
D.
,
1988
, “
Snakes: Active Contour Models
,”
Int. J. Comput. Vis.
,
1
(
4
), pp.
321
331
.10.1007/BF00133570
43.
McInerney
,
T.
, and
Terzopoulos
,
D.
,
1996
, “
Deformable Models in Medical Image Analysis: A Survey
,”
Med. Image Anal.
,
1
(
2
), pp.
91
108
.10.1016/S1361-8415(96)80007-7
44.
Cootes
,
T. F.
,
Edwards
,
G. J.
, and
Taylor
,
C. J.
,
2001
, “
Active Appearance Models
,”
IEEE Trans. Pattern Anal. Mach. Intell.
,
23
(
6
), pp.
681
685
.10.1109/34.927467
45.
Thodberg
,
H. H.
, and
Rosholm
,
A.
,
2003
, “
Application of the Active Shape Model in a Commercial Medical Device for Bone Densitometry
,”
Image Vis. Comput.
,
21
(
13
), pp.
1155
1161
.10.1016/j.imavis.2003.09.002
46.
Smyth
,
P. P.
,
Taylor
,
C. J.
, and
Adams
,
J. E.
,
1999
, “
Vertebral Shape: Automatic Measurement With Active Shape Models
,”
Radiology
,
211
(
2
), pp.
571
578
.10.1148/radiology.211.2.r99ma40571
47.
Solloway
,
S.
,
Hutchinson
,
C. E.
,
Waterton
,
J. C.
, and
Taylor
,
C. J.
,
1997
, “
The Use of Active Shape Models for Making Thickness Measurements of Articular Cartilage From MR Images
,”
Magn. Reson. Med.
,
37
(
6
), pp.
943
952
.10.1002/mrm.1910370620
48.
Barratt
,
D. C.
,
Chan
,
C. S. K.
,
Edwards
,
P. J.
,
Penney
,
G. P.
,
Slomczykowski
,
M.
,
Carter
,
T. J.
, and
Hawkes
,
D. J.
,
2008
, “
Instantiation and Registration of Statistical Shape Models of the Femur and Pelvis Using 3D Ultrasound Imaging
,”
Med. Image Anal.
,
12
(
3
), pp.
358
374
.10.1016/j.media.2007.12.006
49.
Baka
,
N.
,
Kaptein
,
B. L.
,
de Bruijne
,
M.
,
van Walsum
,
T.
,
Giphart
,
J. E.
,
Niessen
,
W. J.
, and
Lelieveldt
,
B. P. F.
,
2011
, “
2D-3D Shape Reconstruction of the Distal Femur From Stereo X-Ray Imaging Using Statistical Shape Models
,”
Med. Image Anal.
,
15
(
6
), pp.
840
850
.10.1016/j.media.2011.04.001
50.
Zhu
,
Z.
, and
Li
,
G.
,
2011
, “
Construction of 3D Human Distal Femoral Surface Models Using a 3D Statistical Deformable Model
,”
J. Biomech.
,
44
, pp.
2362
2368
.10.1016/j.jbiomech.2011.07.006
51.
Bonaretti
,
S.
,
Reimers
,
N.
,
Reyes
,
M.
,
Nikitsin
,
A.
,
Joensson
,
A.
,
Nolte
,
L.
, and
Buchler
,
P.
,
2008
, “
Assessment of Peri-Articular Implant Fitting Based on Statistical Finite Element Modeling
,”
MIDAS Journal—Computational Biomechanics for Medicine (MICCAI Workshop)
, New York, Sep. 6, 2008.
52.
Baldwin
,
M. A.
,
Langenderfer
,
J. E.
,
Rullkoetter
,
P. J.
, and
Laz
,
P. J.
,
2010
, “
Development of Subject-Specific and Statistical Shape Models of the Knee Using an Efficient Segmentation and Mesh-Morphing Approach
,”
Comput. Methods Programs Biomed.
,
97
(
3
), pp.
232
240
.10.1016/j.cmpb.2009.07.005
53.
Kozic
,
N.
,
Weber
,
S.
,
Büchler
,
P.
,
Lutz
,
C.
,
Reimers
,
N.
,
González Ballester
,
M. A.
, and
Reyes
,
M.
,
2010
, “
Optimisation of Orthopedic Implant Design Using Statistical Shape Space Analysis Based on Level Sets
,”
Med. Image Anal.
,
14
(
3
), pp.
265
275
.10.1016/j.media.2010.02.008
54.
Van de Giessen
,
M.
,
Foumani
,
M.
,
Streekstra
,
G. J.
,
Strackee
,
S. D.
,
Maas
,
M.
,
van Vliet
,
L. J.
,
Grimbergen
,
K. A.
, and
Vos
F. M.
,
2010
, “
Statistical Descriptions of Scaphoid and Lunate Bone Shapes
,”
J. Biomech.
,
43
, pp.
1463
1469
.10.1016/j.jbiomech.2010.02.006
55.
Fitzpatrick
,
C. K.
,
Baldwin
,
M. A.
,
Laz
,
P. J.
,
Fitzpatrick
,
D. P.
,
Lerner
,
A. L.
, and
Rullkoetter
,
P. J.
,
2011
, “
Development of a Statistical Shape Model of the Patellofemoral Joint for Investigating Relationships Between Shape and Function
,”
J. Biomech.
,
2011
, pp.
2446
2452
.10.1016/j.jbiomech.2011.06.025
56.
Mahfouz
,
M. R.
,
Abdel Fatah
,
E. E.
,
Bowers
,
L. S.
, and
Scuderi
,
G.
,
2012
, “
Three-Dimensional Morphology of the Knee Reveals Ethnic Differences
,”
Clin. Orthop. Relat. Res.
,
470
(
1
), pp.
172
185
.10.1007/s11999-011-2089-2
57.
Schulz
,
A. P.
,
Reimers
,
N.
,
Wipf
,
F.
,
Vallotton
,
M.
,
Bonaretti
,
S.
,
Kozic
,
N.
,
Reyes
,
M.
, and
Kienast
,
B. J.
,
2012
, “
Evidence Based Development of a Novel Lateral Fibula Plate (VariAx Fibula) Using a Real CT Bone Data Based Optimization Process During Device Development
,”
Open Orthop. J.
,
6
, pp.
1
7
.10.2174/1874325001206010001
58.
Bousleiman
,
H.
,
Iizuka
,
T.
,
Nolte
L.-P.
, and
Reyes
,
M.
,
2013
, “
Population-Based Design of Mandibular Fixation Plates With Bone Quality and Morphology Considerations
,”
Ann. Biomed. Eng.
,
41
(
2
), pp.
377
384
.10.1007/s10439-012-0671-8
59.
Lu
,
Y.-C.
, and
Untaroiu
,
C. D.
,
2013
, “
Statistical Shape Analysis of Clavicular Cortical Bone With Applications to the Development of Mean and Boundary Shape Models
,”
Comput, Methods Programs Biomed.
,
111
(
3
), pp.
613
628
.10.1016/j.cmpb.2013.05.017
60.
Rao
,
C.
,
Fitzpatrick
,
C. K.
,
Rullkoetter
,
P. J.
,
Maletsky
,
L. P.
,
Kim
,
R. H.
, and
Laz
,
P. J.
,
2013
, “
A Statistical Finite Element Model of the Knee Accounting for Shape and Alignment Variability
,”
Med. Eng. Phys.
,
35
(
10
), pp.
1450
1456
.10.1016/j.medengphy.2013.03.021
61.
Dai
,
Y.
,
Rajgopal
,
A.
,
Tarabichi
,
S.
,
Bertin
,
K.
, and
Bischoff
,
J. E.
,
2013
, “
Influence of Ethnicity on Coverage of the Tibia in Total Knee Arthroplasty
,”
Proceedings of the Orthopedic Research Society Annual Meeting
,
San Antonio, TX
, Jan. 26–29.
62.
Engelborghs
,
K.
, and
Kaimal
,
V.
,
2012
, “
Finding the Best Fit: Anatomical Data Mining can Improve the Results for Standard Implant Design
,”
Orthop. Des. Technol.
, May–June, pp.
56
59
.
63.
Bischoff
,
J. E.
,
Davis
,
B.
,
Seebeck
,
J.
,
Henderson
,
A.
,
Zuhars
,
J.
,
Marion
,
P.
, and
Goodlett
,
C.
,
2013
, “
Verification and Validation of an Open Source Based Morphology Analysis Platform to Support Implant Design
,”
Proceedings of the ASME Conference on Frontiers in Medical Devices: Applications of Computer Modeling and Simulation
,
Washington, DC
, Sept. 11–13.
64.
Vigneron
,
L.
,
Lawrenchuk
,
M.
,
Wivell
,
C.
, and
De Boodt
,
S.
,
2013
, “
Comparative Study of Caucasian and Chinese Femur Shapes for Evidence-Based Implant Design
,”
Proceedings of the ASME Conference on Frontiers in Medical Devices: Applications of Computer Modeling and Simulation
,
Washington, DC
, Sept. 11–13.
65.
Dong
,
N.
,
Nevelos
,
J.
, and
Kreuzer
,
S.
,
2013
, “
Combined Acetabular and Femoral Version Angle in Normal Male and Female Populations From CT Data
,”
Bone Joint J.
,
95-B
,
168
.
66.
Heuer
,
F.
,
Schmidt
,
H.
,
Klezl
,
Z.
,
Claes
,
L.
, and
Wilke
,
H.-J.
,
2007
, “
Stepwise Reduction of Functional Spinal Structures Increase Range of Motion and Change Lordosis Angle
,”
J. Biomech.
,
40
, pp.
271
280
.10.1016/j.jbiomech.2006.01.007
67.
Sauerberg
,
I.
,
Siggelkow
,
E.
, and
Bandi-Muenchinger
,
M.
,
2012
, “
Robot-Based Test Method to Determine Specimen-Specific and Joint-Position-Dependent Knee Ligament Kinetics
,”
Proceedings of the Orthopedic Research Society Annual Meeting
, San Francisco, Feb. 4–7, 2012.
68.
Siggelkow
,
E.
,
Sauerberg
,
I.
,
Benazzo
,
F.
, and
Bandi-Muenchinger
,
M.
,
2012
, “
Robot Validation of a Specimen Specific Numerical Human Knee Model for Both Kinematics and Laxity Predictions
,”
Proceedings of the Orthopedic Research Society Annual Meeting
, San Francisco, Feb. 4–7, 2012.
69.
Coombs
,
D. J.
,
Laz
,
P. J.
,
Rao
,
M.
,
Smith
,
S. D.
,
Bushelow
,
M.
, and
Rullkoetter
,
P. J.
,
2012
, “
Stepwise Validated Finite Element Model of the Human Lumbar Spine
,”
Proceedings of the SIMULIA Customer Conference
,
Providence, RI
.
70.
Coombs
,
D. J.
,
Bushelow
,
M.
,
Laz
,
P. J.
,
Rao
,
M.
,
Smith
,
S. D.
, and
Rullkoetter
,
P. J.
,
2013
, “
Stepwise Validated Finite Element Model of the Human Lumbar Spine
,”
Proceedings of the ASME Conference on Frontiers in Medical Devices: Applications of Computer Modeling and Simulation
,
Washington, DC
.
71.
Daffertshofer
,
A.
,
Lamoth
,
C. J. C.
,
Meijer
,
O. G.
, and
Beek
,
P. J.
,
2004
, “
PCA in Studying Coordination and Variability: A Tutorial
,”
Clin. Biomech.
,
19
, pp.
415
428
.10.1016/j.clinbiomech.2004.01.005
72.
Astephen
,
J. L.
, and
Deluzio
,
K. J.
,
2005
, “
Changes in Frontal Plane Dynamics and the Loading Response Phase of the Gait Cycle are Characteristic of Severe Knee Osteoarthritis Application of a Multidimensional Analysis Technique
,”
Clin. Biomech.
,
20
, pp.
209
217
.10.1016/j.clinbiomech.2004.09.007
73.
Deluzio
,
K. J.
,
Wyss
,
U. P.
,
Zee
,
B.
,
Costigan
,
P. A.
, and
Serbie
,
C.
,
1997
, “
Principal Component Models of Knee Kinematics and Kinetics: Normal vs. Pathological Gait Patterns
,”
Hum. Mov. Sci.
,
16
(
2–3
), pp.
201
217
.10.1016/S0167-9457(96)00051-6
74.
Deluzio
,
K. J.
, and
Astephen
,
J. L.
,
2007
, “
Biomechanical Features of Gait Waveform Data Associated With Knee Osteoarthritis: An Application of Principal Component Analysis
,”
Gait and Posture
,
25
, pp.
86
93
.10.1016/j.gaitpost.2006.01.007
75.
Reid
,
S. M.
,
Graham
,
R. B.
, and
Costigan
,
P. A.
,
2010
, “
Differentiation of Young and Older Adult Stair Climbing Gait Using Principal Component Analysis
,”
Gait and Posture
,
31
, pp.
197
203
.10.1016/j.gaitpost.2009.10.005
76.
Boyer
,
K. A.
,
Federolf
,
P.
,
Lin
,
C.
,
Nigg
,
B. M.
, and
Andriacchi
,
T. P.
,
2012
, “
Kinematic Adaptations to a Variable Stiffness Shoe: Mechanisms for Reducing Joint Loading
,”
J. Biomech.
,
45
, pp.
1619
1624
.10.1016/j.jbiomech.2012.04.010
77.
Nigg
,
B. M.
,
Baltich
,
J.
,
Maurer
,
C.
, and
Federolf
,
P.
,
2012
, “
Shoe Midsole Hardness, Sex and Age Effects on Lower Extremity Kinematics During Running
,”
J. Biomech.
,
45
, pp.
1692
1697
.10.1016/j.jbiomech.2012.03.027
78.
Galloway
,
F.
,
Worsley
,
P.
,
Stokes
,
M.
,
Nair
,
P.
, and
Taylor
,
M.
,
2012
, “
Development of a Statistical Model of Knee Kinetics for Applications in Pre-Clinical Testing
,”
J. Biomech.
,
45
, pp.
191
195
.10.1016/j.jbiomech.2011.09.009
79.
Maurer
,
C.
,
Federolf
,
P.
,
von Tscharner
,
V.
,
Stirling
,
L.
, and
Nigg
,
B. M.
,
2012
, “
Discrimination of Gender-, Speed-, and Shoe-Dependent Movement Patterns in Runners Using Full-Body Kinematics
,”
Gait and Posture
,
36
, pp.
40
45
.10.1016/j.gaitpost.2011.12.023
80.
Federolf
,
P. A.
,
Boyer
,
K. A.
, and
Andriacchi
,
T. P.
,
2013
, “
Application of Principal Component Analysis in Clinical Gait Research: Identification of Systematic Differences Between Healthy and Medial Knee-Osteoarthritic Gait
,”
J. Biomech.
,
46
, pp.
2173
2178
.10.1016/j.jbiomech.2013.06.032
81.
Worsley
,
P.
,
Stokes
,
M.
, and
Taylor
,
M.
,
2010
, “
Comparison of Osteoarthritic Knee Kinematics and Kinetics With Age Matched Healthy Individuals
,”
J. Biomech.
,
43
, p.
S29
.10.1016/S0021-9290(10)70052-X
82.
Worsley
,
P.
,
Stokes
,
M.
, and
Taylor
,
M.
,
2011
, “
Predicted Knee Kinematics and Kinetics During Functional Activities Using Motion Capture and Musculoskeletal Modeling in Healthy Older People
,”
Gait and Posture
,
33
, pp.
268
273
.10.1016/j.gaitpost.2010.11.018
83.
D'Lima
,
D. D.
,
Townsend
,
C. P.
,
Arms
,
S. W.
,
Morris
,
B. A.
, and
Colwell
,
C. W.
, Jr.
,
2005
, “
An Implantable Telemetry Device to Measure Intra-Articular Tibial Forces
,”
J. Biomech.
,
38
, pp.
299
304
.10.1016/j.jbiomech.2004.02.011
84.
Heinlein
,
B.
,
Graichen
,
F.
,
Bender
,
A.
,
Rohlmann
,
A.
, and
Bergmann
,
G.
,
2007
, “
Design, Calibration and Pre-Clinical Testing of an Instrumented Tibial Tray
,”
J. Biomech.
,
40
, pp.
S4
S10
.10.1016/j.jbiomech.2007.02.014
85.
Westerhoff
,
P.
,
Graichen
,
F.
,
Bender
,
A.
,
Rohlmann
,
A.
, and
Bergmann
,
G.
,
2009
, “
An Instrumented Implant for in Vivo Measurement of Contact Forces and Contact Moments in the Shoulder Joint
,”
Med. Eng. Phys.
,
31
, pp.
207
213
.10.1016/j.medengphy.2008.07.011
86.
Querol
,
L. B.
,
Buchler
,
P.
,
Rueckert
,
D.
,
Nolte
,
L. P.
, and
Ballester
,
M. A. G.
,
2006
, “
Statistical Finite Element Model for Bone Shape and Biomechanical Properties
,”
Lect. Notes Comput. Sci.
,
4190
, pp.
405
411
.10.1007/11866565
87.
Boutroy
,
S.
,
Van Rietbergen
,
B.
,
Sornay-Rendu
,
E.
,
Munoz
,
F.
,
Bouxsein
,
M. L.
, and
Delmas
P. D.
,
2008
, “
Finite Element Analysis Based on in Vivo HR-pQCT Images of the Distal Radius is Associated With Wrist Fracture in Postmenopausal Women
,”
J. Bone Miner. Res.
,
23
(
3
), pp.
392
399
.10.1359/jbmr.071108
88.
Bryan
,
R.
,
Nair
,
P. B.
, and
Taylor
,
M.
,
2009
, “
Use of a Statistical Model of the Whole Femur in a Large Scale, Multi-Model Study of Femoral Neck Fracture Risk
,”
J. Biomech.
,
42
, pp.
2171
2176
.10.1016/j.jbiomech.2009.05.038
89.
Vilayphiou
,
N.
,
Boutroy
,
S.
,
Sornay-rendu
,
E.
,
van Rietbergen
,
B.
,
Munoz
,
F.
,
Delmas
,
P. D.
, and
Chapurlat
,
R.
,
2010
, “
Finite Element Analysis Performed on Radius and Tibia HR-pQCT Images and Fragility Fractures at all Sites in Women
,”
Bone
,
46
, pp.
1030
1037
.10.1016/j.bone.2009.12.015
90.
Vilayphiou
,
N.
,
Boutroy
,
S.
,
Szulc
,
P.
,
van Rietbergen
,
B.
,
Munoz
,
F.
,
Delmas
,
P. D.
, and
Chapurlat
,
R.
,
2011
, “
Finite Element Analysis Performed on Radius and Tibia HR-pQCT Images and Fragility Fractures at all Sites in Men
,”
J. Bone Miner. Res.
,
26
(
5
), pp.
965
973
.10.1002/jbmr.297
91.
Fitzpatrick
,
C. K.
,
Baldwin
,
M. A.
,
Rullkoeter
,
P. J.
, and
Laz
,
P. J.
,
2011
, “
Combined Probabilistic and Principal Component Analysis Approach for Multivariate Sensitivity Evaluation and Application to Implanted Patellofemoral Mechanics
,”
J. Biomech.
,
44
, pp.
13
21
.10.1016/j.jbiomech.2010.08.016
92.
Bryan
,
R.
,
Nair
,
P. B.
, and
Taylor
,
M.
,
2012
, “
Influence of Femur Size and Morphology on Load Transfer in the Resurfaced Femoral Head: A Large Scale, Multi-Subject Finite Element Study
,”
J. Biomech.
,
45
, pp.
1952
1958
.10.1016/j.jbiomech.2012.05.015
93.
Galloway
,
F.
,
Kahnt
,
M.
,
Ramm
,
H.
,
Worsley
,
P.
,
Zachow
,
S.
,
Nair
,
P.
, and
Taylor
,
M.
,
2013
, “
A Large Scale Finite Element Study of a Cementless Osseointegrated Tibial Tray
,”
J. Biomech.
,
46
(
11
), pp.
1900
1906
.10.1016/j.jbiomech.2013.04.021
94.
Laz
,
P. J.
, and
Browne
,
M.
,
2010
, “
A Review of Probabilistic Analysis in Orthopedic Biomechanics
,”
Proc. Inst. Mech. Eng., Part H: J. Eng. Med.
,
224
, pp.
927
943
.10.1243/09544119JEIM739
You do not currently have access to this content.