The tolerance of the spine to bending moments, used for evaluation of injury prevention devices, is often determined through eccentric axial compression experiments using segments of the cadaver spine. Preliminary experiments in our laboratory demonstrated that eccentric axial compression resulted in “unexpected” (artifact) moments. The aim of this study was to evaluate the static and dynamic effects of test configuration on bending moments during eccentric axial compression typical in cadaver spine segment testing. Specific objectives were to create dynamic equilibrium equations for the loads measured inferior to the specimen, experimentally verify these equations, and compare moment responses from various test configurations using synthetic (rubber) and human cadaver specimens. The equilibrium equations were verified by performing quasi-static (5 mm/s) and dynamic experiments (0.4 m/s) on a rubber specimen and comparing calculated shear forces and bending moments to those measured using a six-axis load cell. Moment responses were compared for hinge joint, linear slider and hinge joint, and roller joint configurations tested at quasi-static and dynamic rates. Calculated shear force and bending moment curves had similar shapes to those measured. Calculated values in the first local minima differed from those measured by 3% and 15%, respectively, in the dynamic test, and these occurred within 1.5 ms of those measured. In the rubber specimen experiments, for the hinge joint (translation constrained), quasi-static and dynamic posterior eccentric compression resulted in flexion (unexpected) moments. For the slider and hinge joints and the roller joints (translation unconstrained), extension (“expected”) moments were measured quasi-statically and initial flexion (unexpected) moments were measured dynamically. In the cadaver experiments with roller joints, anterior and posterior eccentricities resulted in extension moments, which were unexpected and expected, for those configurations, respectively. The unexpected moments were due to the inertia of the superior mounting structures. This study has shown that eccentric axial compression produces unexpected moments due to translation constraints at all loading rates and due to the inertia of the superior mounting structures in dynamic experiments. It may be incorrect to assume that bending moments are equal to the product of compression force and eccentricity, particularly where the test configuration involves translational constraints and where the experiments are dynamic. In order to reduce inertial moment artifacts, the mass, and moment of inertia of any loading jig structures that rotate with the specimen should be minimized. Also, the distance between these structures and the load cell should be reduced.

References

1.
Eppinger
,
R.
,
Sun
,
E.
,
Kuppa
,
S.
, and
Saul
,
R.
,
2000
, “
Supplement: Development of Improved Injury Criteria for the Assessment of Advanced Automotive Restraint Systems—II
,” National Highway Traffic Safety Administration, Technical Report.
2.
Mertz
,
H. J.
,
Irwin
,
A. L.
, and
Prasad
,
P.
,
2003
, “
Biomechanical and Scaling Bases for Frontal and Side Impact Injury Assessment Reference Values
,”
Stapp Car Crash J.
,
47
, Oct., pp.
155
188
.
3.
Heudorfer
,
B.
,
Breuninger
,
M.
,
Karlbauer
,
U.
,
Kraft
,
M.
, and
Maidel
,
J.
,
2005
, “
Roofbag—A Concept Study to Provide Enhanced Protection for Head and Neck in Case of Rollover
,”
Proceedings of the 19th International Technical Conference on the Enhanced Safety of Vehicles
,
Washington DC
, June 6–9, pp.
1
17
.
4.
Nelson
,
T. S.
,
2011
, “
Towards a Neck Injury Prevention Helmet for Head-First Impacts: A Mechanical Investigation
,” Ph.D. thesis, University of British Columbia, Vancouver, BC, Canada.
5.
Carter
,
J. W.
,
Ku
,
G. S.
,
Nuckley
,
D. J.
, and
Ching
,
R. P.
,
2002
, “
Tolerance of the Cervical Spine to Eccentric Axial Compression
,”
Stapp Car Crash J.
,
46
, pp.
441
459
.
6.
Nightingale
,
R. W.
,
Carol Chancey
,
V.
,
Ottaviano
,
D.
,
Luck
,
J. F.
,
Tran
,
L.
,
Prange
,
M.
, and
Myers
,
B. S.
,
2007
, “
Flexion and Extension Structural Properties and Strengths for Male Cervical Spine Segments
,”
J. Biomech.
,
40
(
3
), pp.
535
542
.10.1016/j.jbiomech.2006.02.015
7.
Nightingale
,
R. W.
,
Winkelstein
,
B. A.
,
Knaub
,
K. E.
,
Richardson
,
W. J.
,
Luck
,
J. F.
, and
Myers
,
B. S.
,
2002
, “
Comparative Strengths and Structural Properties of the Upper and Lower Cervical Spine in Flexion and Extension
,”
J. Biomech.
,
35
(
6
), pp.
725
732
.10.1016/S0021-9290(02)00037-4
8.
Crowell
,
R. R.
,
Shea
,
M.
,
Edwards
,
W. T.
,
Clothiaux
,
P. L.
,
White
,
A. A.
, and
Hayes
,
W. C.
,
1993
, “
Cervical Injuries Under Flexion and Compression Loading
,”
J. Spinal Disord.
,
6
(
2
), pp.
175
181
.10.1097/00002517-199304000-00013
9.
Przybyla
,
A. S.
,
Skrzypiec
,
D.
,
Pollintine
,
P.
,
Dolan
,
P.
, and
Adams
,
M. A.
,
2007
, “
Strength of the Cervical Spine in Compression and Bending
,”
Spine
,
32
(
15
), pp.
1612
1620
.10.1097/BRS.0b013e318074c40b
10.
Duma
,
S.
,
Kemper
,
A. R.
, and
Porta
,
D. J.
,
2008
, “
Biomechanical Response of the Human Cervical Spine
,”
Biomed. Sci. Instrum.
,
44
, pp.
135
140
.
11.
Schendel
,
M. J.
,
Wood
,
K. B.
,
Buttermann
,
G. R.
,
Lewis
,
J. L.
, and
Ogilvie
,
J. W.
,
1993
, “
Experimental Measurement of Ligament Force, Facet Force, and Segment Motion in the Human Lumbar Spine
,”
J. Biomech.
,
26
(
4–5
), pp.
427
438
.10.1016/0021-9290(93)90006-Z
12.
Rohlmann
,
A.
,
Bergmann
,
G.
,
Graichen
,
F.
, and
Weber
,
U.
,
1997
, “
Comparison of Loads on Internal Spinal Fixation Devices Measured In Vitro and In Vivo
,”
Med. Eng. Phys.
,
19
(
6
), pp.
539
546
.10.1016/S1350-4533(97)00018-0
13.
Flamme
,
C. H.
,
Von Der Heide
,
N.
,
Heymann
,
C.
, and
Hurschler
,
C.
,
2006
, “
Primary Stability of Anterior Lumbar Stabilization: Interdependence of Implant Type and Endplate Retention or Removal
,”
Eur. Spine J.
,
15
(
6
), pp.
807
818
.10.1007/s00586-005-0993-4
14.
Panjabi
,
M. M.
,
1988
, “
Biomechanical Evaluation of Spinal Fixation Devices: I. A Conceptual Framework
,”
Spine
,
13
(
10
), pp.
1129
1134
.10.1097/00007632-198810000-00013
15.
Panjabi
,
M. M.
,
Abumi
,
K.
,
Duranceau
,
J.
, and
Crisco
,
J. J.
,
1988
, “
Biomechanical Evaluation of Spinal Fixation Devices: II. Stability Provided by Eight Internal Fixation Devices
,”
Spine
,
13
(
10
), pp.
1135
1140
.10.1097/00007632-198810000-00014
16.
Goertzen
,
D. J.
,
Lane
,
C.
, and
Oxland
,
T. R.
,
2004
, “
Neutral Zone and Range of Motion in the Spine Are Greater With Stepwise Loading Than With a Continuous Loading Protocol. An In Vitro Porcine Investigation
,”
J. Biomech.
,
37
(
2
), pp.
257
261
.10.1016/S0021-9290(03)00307-5
17.
Shea
,
M.
,
Edwards
,
W. T.
,
White
,
A. A.
, and
Hayes
,
W. C.
,
1991
, “
Variations of Stiffness and Strength Along the Human Cervical Spine
,”
J. Biomech.
,
24
(
2
), pp.
95
107
.10.1016/0021-9290(91)90354-P
18.
Niosi
,
C. A.
,
Zhu
,
Q. A.
,
Wilson
,
D. C.
,
Keynan
,
O.
,
Wilson
,
D. R.
, and
Oxland
,
T. R.
,
2006
, “
Biomechanical Characterization of the Three-Dimensional Kinematic Behaviour of the Dynesys Dynamic Stabilization System: An In Vitro Study
,”
Eur. Spine J.
,
15
(
6
), pp.
913
922
.10.1007/s00586-005-0948-9
19.
Maak
,
T. G.
,
Ivancic
,
P. C.
,
Tominaga
,
Y.
, and
Panjabi
,
M. M.
,
2007
, “
Side Impact Causes Multiplanar Cervical Spine Injuries
,”
J. Trauma
,
63
(
6
), pp.
1296
1307
.10.1097/01.ta.0000241237.72420.51
20.
Eguizabal
,
J.
,
Tufaga
,
M.
,
Scheer
,
J. K.
,
Ames
,
C.
,
Lotz
,
J. C.
, and
Buckley
,
J. M.
,
2010
, “
Pure Moment Testing for Spinal Biomechanics Applications: Fixed Versus Sliding Ring Cable-Driven Test Designs
,”
J. Biomech.
,
43
(
7
), pp.
1422
1425
.10.1016/j.jbiomech.2010.02.004
21.
Ching
,
R. P.
,
Elias
,
R. A.
,
Harrington
,
R. M.
, and
Nuckley
,
D. J.
,
2004
, “
Neck Injury Mechanisms in Lateral Bending
,”
Proceedings of the Injury Biomechanics Research—32nd International Workshop
,
Nashville TN
, October 31, 2004, pp.
271
276
.
22.
Gedet
,
P.
,
Thistlethwaite
,
P. A.
, and
Ferguson
,
S. J.
,
2007
, “
Minimizing Errors During in vitro Testing of Multisegmental Spine Specimens: Considerations for Component Selection and Kinematic Measurement
,”
J. Biomech.
,
40
(
8
), pp.
1881
1885
.10.1016/j.jbiomech.2006.07.024
23.
Cripton
,
P. A.
,
Bruehlmann
,
S. B.
,
Orr
,
T. E.
,
Oxland
,
T. R.
, and
Nolte
,
L.
,
2000
, “
In Vitro Axial Preload Application During Spine Flexibility Testing: Towards Reduced Apparatus-Related Artefacts
,”
J. Biomech.
,
33
(
12
), pp.
1559
1568
.10.1016/S0021-9290(00)00145-7
24.
Nightingale
,
R. W.
,
Myers
,
B. S.
,
Mcelhaney
,
J. H.
,
Richardson
,
W. J.
, and
Doherty
,
B. J.
,
1991
, “
The Influence of End Condition on Human Cervical Spine Injury Mechanisms
,” SAE Paper No. 912915.
25.
Zhu
,
Q.
,
Lane
,
C.
,
Ching
,
R. P.
,
Gordon
,
J. D.
,
Fisher
,
C. G.
,
Dvorak
,
M. F.
,
Cripton
,
P. A.
, and
Oxland
,
T. R.
,
2008
, “
Translational Constraint Influences Dynamic Spinal Canal Occlusion of the Thoracic Spine: An In Vitro Experimental Study
,”
J. Biomech.
,
41
(
1
), pp.
171
179
.10.1016/j.jbiomech.2007.06.030
26.
Chancey
,
V. C.
,
Nightingale
,
R. W.
,
Van Ee
,
C. A.
,
Knaub
,
K. E.
, and
Myers
,
B. S.
,
2003
, “
Improved Estimation of Human Neck Tensile Tolerance: Reducing the Range of Reported Tolerance Using Anthropometrically Correct Muscles and Optimized Physiologic Initial Conditions
,”
Stapp Car Crash J.
,
47
, Oct., pp.
135
153
.
You do not currently have access to this content.