To quantify the transport and adhesion of drug particles in a complex vascular environment, computational fluid particle dynamics (CFPD) simulations of blood flow and drug particulate were conducted in three different geometries representing the human lung vasculature for steady and pulsatile flow conditions. A fully developed flow profile was assumed as the inlet velocity, and a lumped mathematical model was used for the calculation of the outlet pressure boundary condition. A receptor–ligand model was used to simulate the particle binding probability. The results indicate that bigger particles have lower deposition fraction due to less chance of successful binding. Realistic unsteady flow significantly accelerates the binding activity over a wide range of particle sizes and also improves the particle deposition fraction in bifurcation regions when comparing with steady flow condition. Furthermore, surface imperfections and geometrical complexity coupled with the pulsatility effect can enhance fluid mixing and accordingly particle binding efficiency. The particle binding density at bifurcation regions increases with generation order and drug carriers are washed away faster in steady flow. Thus, when studying drug delivery mechanism in vitro and in vivo, it is important to take into account blood flow pulsatility in realistic geometry. Moreover, tissues close to bifurcations are more susceptible to deterioration due to higher uptake.

References

References
1.
Liu
,
Y.
,
Tan
,
J.
,
Thomas
,
A.
,
Ou-Yang
,
D.
, and
Muzykantov
,
V. R.
,
2012
, “
The Shape of Things to Come: Importance of Design in Nanotechnology for Drug Delivery
,”
Ther. Delivery
,
3
(
2
), pp.
181
194
.10.4155/tde.11.156
2.
Saul
,
J. M.
,
Annapragada
,
A.
,
Natarajan
,
J. V.
, and
Bellamkonda
,
R. V.
,
2003
, “
Controlled Targeting of Liposomal Doxorubicin via the Folate Receptor in vitro
,”
J. Controlled Release
,
92
(
1–2
), pp.
49
67
.10.1016/S0168-3659(03)00295-5
3.
Wang
,
S.
,
Zhou
,
Y.
,
Tan
,
J.
,
Xu
,
J.
,
Yang
,
J.
, and
Liu
,
Y.
,
2014
, “
Computational Modeling of Magnetic Nanoparticle Targeting to Stent Surface Under High Gradient Field
,”
Comput. Mech.
,
53
(
3
), pp.
403
412
.10.1007/s00466-013-0968-y
4.
Kona
,
S.
,
Dong
,
J. F.
,
Liu
,
Y.
, and
Nguyen
,
K. T.
,
2012
, “
Biodegradable Nanoparticles Mimicking Platelet Binding Facilitate Targeted Drug Delivery to Endothelial Cells under Shear Flow
,”
Int. J. Pharm.
,
2
(
423
), pp.
516
524
.10.1016/j.ijpharm.2011.11.043
5.
Tan
,
J.
,
Shah
,
S.
,
Thomas
,
A.
,
Ou-Yang
,
H. D.
, and
Liu
,
Y.
,
2013
, “
The Influence of Size, Shape and Vessel Geometry on Nanoparticle Distribution
,”
Microfluid. Nanofluid.
,
14
(
1–2
), pp.
77
87
.10.1007/s10404-012-1024-5
6.
Tan
,
J.
,
Wang
,
S.
,
Yang
,
J.
, and
Liu
,
Y.
,
2013
, “
Coupled Particulate and Continuum Model for Nanoparticle Targeted Delivery
,”
Comput. Struct.
,
122
(
6
), pp.
128
134
.10.1016/j.compstruc.2012.12.019
7.
Asgharian
,
B.
,
Hofmann
,
W.
, and
Bergmann
,
R.
,
2001
, “
Particle Deposition in a Multiple-Path Model of the Human Lung
,”
Aerosol Sci. Technol.
,
34
(
4
), pp.
332
339
.10.1080/02786820119122
8.
Lai
,
T.
,
Morsi
,
Y.
, and
Mazumdar
,
J.
,
2002
, “
Modelling and Simulation of Particle Deposition in the Human Lung
,” Profiles in Industrial Research Knowledge and Innovation, pp.
313
320
.
9.
Johnston
,
B. M.
,
Johnston
,
P. R.
,
Corney
,
S.
, and
Kilpatrick
,
D.
,
2006
, “
Non-Newtonian Blood Flow in Human Right Coronary Arteries: Transient Simulations
,”
J. Biomech.
,
39
(
6
), pp.
1116
1128
.10.1016/j.jbiomech.2005.01.034
10.
Tan
,
J.
,
Thomas
,
A.
, and
Liu
,
Y.
,
2012
, “
Influence of Red Blood Cells on Nanoparticle Targeted Delivery in Microcirculation
,”
Soft Matter
,
8
(
6
), pp.
1934
1946
.10.1039/c2sm06391c
11.
Liu
,
Y.
,
Shah
,
S.
, and
Tan
,
J.
,
2012
, “
Computational Modeling of Nanoparticle Targeted Drug Delivery
,”
Rev. Nanosci. Nanotechnol.
,
1
(
1
), pp.
66
83
.10.1166/rnn.2012.1014
12.
Nowak
,
N.
,
Kakade
,
P. P.
, and
Annapragada
,
A. V.
,
2003
, “
Computational Fluid Dynamics Simulation of Airflow and Aerosol Deposition in Human Lungs
,”
Ann. Biomed. Eng.
,
31
(
4
), pp.
374
390
.10.1114/1.1560632
13.
Lin
,
C.-L.
, and
Hoffman
E. A.
,
2004
, “
Comparison of Airflows in Weibel-based and CT-based Human Lung Geometries
,”
APS Division of Fluid Dynamics Meeting Abstracts
,
1
, pp.
21
23
.
14.
Lin
,
C-L.
,
Tawhai
,
M. H.
,
McLennan
,
G.
, and
Hoffman
,
E. A.
,
2006
, “
Multiscale Simulation of Air Flow in the CT-Based Lung Model
,”
J. Biomech.
,
39
(4), p.
S265
.10.1016/S0021-9290(06)84013-3
15.
Sanghun
,
C.
,
Hoffman
,
E. A.
,
Tawhai
,
M.
,
Castro
,
M.
, and
Lin
,
C.-L.
,
2012
, “
A Numerical Study Of Airway Resistance And Particle Deposition In Normal And Asthmatic Lungs
,” in A66, Modeling, Mechanics and Gas Exchange, American Thoracic Society. Abstract No. A2070.
16.
Hasegawa
,
M.
,
Burnette
,
N.
,
Yin
,
Y.
,
Lin
,
C.-L.
, and
Hoffman
,
E. A.
,
2011
, “
Ct-Based Characterization Of Male And Female Airway Tree Branching Patterns: A Revisit To A Half-Century-Old Post Mortem Study With New Non-Invasive Measures
,”
Am. J. Respir. Crit. Care Med.
,
183
(3), pp.
A5225
A5227
.
17.
Marsden
,
A. L.
, Vignon-Clementel, I. E., Chan, F. P., Feinstein, J. A., and Taylor, C. A.,
2007
, “
Effects of Exercise and Respiration on Hemodynamic Efficiency in CFD Simulations of the Total Cavopulmonary Connection
,”
Ann. Biomed. Eng.
,
35
(
2
), pp.
250
263
.10.1007/s10439-006-9224-3
18.
Oakes
,
J. M.
,
Marsden
,
L. A.
,
Grandmont
,
C.
,
Shadden
,
C. S.
,
Darquenne
,
C.
, and
Vignon-Clementel
,
E.
,
2014
, “
Airflow and Particle Deposition Simulations in Health and Emphysema: From In Vivo to In Silico Animal Experiments
,”
Ann. Biomed. Eng.
,
42
(4), pp.
899
914
.10.1007/s10439-013-0954-8
19.
Schroeter
,
J. D.
,
Kimbell
,
J. S.
,
Asgharian
,
B.
,
Tewksbury
,
E. W.
, and
Singal
,
M.
,
2012
, “
Computational Fluid Dynamics Simulations of Submicrometer and Micrometer Particle Deposition in the Nasal Passages of a Sprague-Dawley Rat
,”
J. Aerosol Sci.
,
43
(
1
), pp.
31
44
.10.1016/j.jaerosci.2011.08.008
20.
Chern
,
M.-J.
,
Wu
,
M.-T.
, and
Her
,
S.-W.
,
2012
, “
Numerical Study for Blood Flow in Pulmonary Arteries After Repair of Tetralogy of Fallot
,”
Comput. Math. Methods Med.
,
11
(20), p.
198108
. 10.1155/2012/198108
21.
Chern
,
M.-J.
, Kanna, P. R., Lu, Y-J., Cheng, I-C., and Chang, S-C.,
2010
, “
A CFD Study of the Interaction of Oscillatory Flows With a Pair of Side-By-Side Cylinders
,”
J. Fluids Struct.
,
26
(
4
), pp.
626
643
.10.1016/j.jfluidstructs.2010.03.002
22.
Zhang
,
Z.
, C. Kleinstreuer,
C., Donohue
,
J. F.
, and
Kim
,
C. S.
,
2005
, “
Comparison of Micro- and Nano-Size Particle Depositions in a Human Upper Airway Model
,”
J. Aerosol Sci.
,
36
(
2
), pp.
211
233
.10.1016/j.jaerosci.2004.08.006
23.
Kleinstreuer
,
C.
, and
Zhang
,
Z.
,
2003
, “
Laminar-To-Turbulent Fluid-Particle Flows in a Human Airway Model
,”
Int. J. Multiphase Flow
,
29
(
2
), pp.
271
289
.10.1016/S0301-9322(02)00131-3
24.
Worth Longest
,
P.
, and
Kleinstreuer
,
C.
,
2003
, “
Comparison of Blood Particle Deposition Models for Non-Parallel Flow Domains
,”
J. Biomech.
,
36
(
3
), pp.
421
430
.10.1016/S0021-9290(02)00434-7
25.
Decuzzi
,
P.
, and
Ferrari
,
M.
,
2006
, “
The Adhesive Strength of Non-Spherical Particles Mediated by Specific Interactions
,”
Biomaterials
,
27
(
30
), pp.
5307
5314
.10.1016/j.biomaterials.2006.05.024
26.
Kheyfets
,
V. O.
,
O'Dell
,
W.
,
Smith
,
T.
,
Reilly
,
J. J.
, and
Finol
,
E. A.
,
2013
, “
Considerations for Numerical Modeling of the Pulmonary Circulation—A Review With a Focus on Pulmonary Hypertension
,”
ASME J. Biomech. Eng.
,
135
(
6
), p.
061011
.10.1115/1.4024141
27.
Goldman
,
A.
,
Cox
,
R.
, and
Brenner
,
H.
,
1967
, “
Slow Viscous Motion of a Sphere Parallel to a Plane Wall—II Couette Flow
,”
Chem. Eng. Sci.
,
22
(
4
), pp.
653
660
.10.1016/0009-2509(67)80048-4
28.
Haun
,
J. B.
, and
Hammer
,
D. A.
,
2008
, “
Quantifying Nanoparticle Adhesion Mediated by Specific Molecular Interactions
,”
Langmuir
,
24
(
16
), pp.
8821
8832
.10.1021/la8005844
29.
Smith
,
L. A.
,
Aranda-Espinoza
,
H.
,
Haun
,
J. B.
, and
Hammer
,
D. A.
,
2007
, “
Interplay Between Shear Stress and Adhesion on Neutrophil Locomotion
,”
Biophys. J.
,
92
(
2
), pp.
632
640
.10.1529/biophysj.105.079418
30.
Henk
,
C. B.
,
Schlechta
,
B.
,
Grampp
,
S.
,
Gomischek
,
G.
,
Klepetko
,
W.
, and
Mostbeck
,
G. H.
,
1998
, “
Pulmonary and Aortic Blood Flow Measurements in Normal Subjects and Patients After Single Lung Transplantation at 0.5 T Using Velocity Encoded Cine MRI
,”
Chest J.
,
114
(
3
), pp.
771
779
.10.1378/chest.114.3.771
31.
Strahler
,
A. N.
,
1952
, “
Hypsometric (Area-Altitude) Analysis of Erosional Topography
,”
Geol. Soc. Am. Bull.
,
63
(
11
), pp.
1117
1142
.10.1130/0016-7606(1952)63[1117:HAAOET]2.0.CO;2
32.
Rider
,
C. A.
,
Tang
,
N. J.
, and
Fung
,
B. Y-C.
,
1993
, “
Morphometry of Pig Coronary Arterial Trees
,”
Am. J. Physiol.
,
265
(
1
), pp.
H350
H365
.WOS:A1993LP43200048
33.
Huang
,
W.
,
Yen
,
R. T.
,
McLaurine
,
M.
, and
Bledsoe
,
G.
,
1996
, “
Morphometry of the Human Pulmonary Vasculature
,”
J. Appl. Physiol.
,
81
(
5
), pp.
2123
2133
.WOS:A1996VT20500037
34.
Spilker
,
R. L.
,
Feinstein
,
J. A.
,
Parker
,
D. W.
,
Reddy
,
V. M.
, and
Taylor
,
C. A.
,
2007
, “
Morphometry-Based Impedance Boundary Conditions for Patient-Specific Modeling of Blood Flow in Pulmonary Arteries
,”
Ann. Biomed. Eng
,
35
(
4
), pp.
546
559
.10.1007/s10439-006-9240-3
35.
Mach
,
A. J.
,
Yi,
Xu.
,
Sollier
,
E.
,
Amini
,
H.
,
Go
,
D. E.
, and
Di Carlo
,
D.
, Mechanics of Particle Trapping and Maintenance in Micro-Scale Fluid Vortices, University of California, Los Angeles, CA.
36.
Olufsen
,
M. S.
, and
Nadim
,
A.
,
2004
, “
On Deriving Lumped Models for Blood Flow and Pressure in the Systemic Arteries
,”
Math. Biosci. Eng.
,
1
(
1
), pp.
61
80
.10.3934/mbe.2004.1.61
37.
Savithiri
,
S.
,
Pattamatta
,
A.
, and
Das
,
S. K.
,
2011
, “
Scaling Analysis for the Anvestigation of Slip Mechanisms in Nanofluids
,”
Nanoscale Res. Lett.
,
6
(
1
), pp.
1
15
.10.1186/1556-276X-6-471
You do not currently have access to this content.