Inertial measurement units (IMU) are gaining increasing importance for human motion tracking in a large variety of applications. IMUs consist of gyroscopes, accelerometers, and magnetometers which provide angular rate, acceleration, and magnetic field information, respectively. In scenarios with a permanently distorted magnetic field, orientation estimation algorithms revert to using only angular rate and acceleration information. The result is an increasing drift error of the heading information. This article describes a method to compensate the orientation drift of IMUs using angular rate and acceleration readings in a quaternion-based algorithm. Zero points (ZP) were introduced, which provide additional heading and gyroscope bias information and were combined with bidirectional orientation computation. The necessary frequency of ZPs to achieve an acceptable error level is derived in this article. In a laboratory environment the method and the effect of varying interval length between ZPs was evaluated. Eight subjects were equipped with seven IMUs at trunk, head and upper extremities. They performed a predefined course of box handling for 40 min at different motion speeds and ranges of motion. The orientation estimation was compared to an optical motion tracking system. The resulting mean root mean squared error (RMSE) of all measurements ranged from 1.7 deg to 7.6 deg (roll and pitch) and from 3.5 deg to 15.0 deg (heading) depending on the measured segment, at a mean interval-length of 1.1 min between two ZPs without magnetometer usage. The 95% limits of agreement (LOA) ranged in best case from −2.9 deg to 3.6 deg at the hip roll angle and in worst case from −19.3 deg to 18.9 deg at the forearm heading angle. This study demonstrates that combining ZPs and bidirectional computation can reduce orientation error of IMUs in environments with magnetic field distortion.

References

References
1.
Ellegast
,
R.
,
Hermanns
,
I.
, and
Schiefer
,
C.
,
2009
, “
Workload Assessment in Field Using the Ambulatory CUELA System
,”
Digital Human Modeling
(Vol. 5620 of Lecture Notes in Computer Science),
V. G.
Duffy
, ed.,
Springer
, San Diego, CA, pp.
221
226
.
2.
Bortz
,
J. E.
,
1971
, “
A New Mathematical Formulation for Strapdown Inertial Navigation
,”
IEEE Trans. Aerosp. Electron. Syst.
,
7
(
1
), pp.
61
66
.10.1109/TAES.1971.310252
3.
Bachmann
,
E.
,
Yun
,
X.
, and
Peterson
,
C.
,
2004
, “
An Investigation of the Effects of Magnetic Variations on Inertial/Magnetic Orientation Sensors
,”
IEEE International Conference on Robotics and Automation
, New Orleans, LA, Apr. 26–May 1, Vol.
2
, pp.
1115
1122
.
4.
Roetenberg
,
D.
,
Luinge
,
H.
, and
Veltink
,
P.
,
2003
, “
Inertial and Magnetic Sensing of Human Movement Near Ferromagnetic Materials
,”
The Second IEEE and ACM International Symposium on Mixed and Augmented Reality
, Tokyo, Japan, Oct. 7–10, pp.
268
269
.
5.
Roetenberg
,
D.
,
Luinge
,
H. J.
,
Baten
,
C. T. M.
, and
Veltink
,
P. H.
,
2005
, “
Compensation of Magnetic Disturbances Improves Inertial and Magnetic Sensing of Human Body Segment Orientation
,”
IEEE Trans. Neural Syst. Rehabil. Eng.
,
13
(
3
), pp.
395
405
.10.1109/TNSRE.2005.847353
6.
Roetenberg
,
D.
,
Slycke
,
P.
,
Ventevogel
,
A.
, and
Veltink
,
P. H.
,
2007
, “
A Portable Magnetic Position and Orientation Tracker
,”
Sens. Actuators
, A,
135
(
2
), pp.
426
432
.10.1016/j.sna.2006.08.020
7.
Schepers
,
H. M.
,
Roetenberg
,
D.
, and
Veltink
,
P. H.
,
2010
, “
Ambulatory Human Motion Tracking by Fusion of Inertial and Magnetic Sensing With Adaptive Actuation
,”
Med. Biol. Eng. Comput.
,
48
(
1
), pp.
27
37
.10.1007/s11517-009-0562-9
8.
Saxena
,
A.
,
Gupta
,
G.
,
Gerasimov
,
V.
, and
Ourselin
,
S.
,
2005
, “
In use Parameter Estimation of Inertial Sensors by Detecting Multilevel Quasi-Static States
,”
Knowledge-Based Intelligent Information and Engineering Systems
(Vol. 3684 of Lecture Notes in Computer Science),
R.
Khosla
,
R.
Howlett
, and
L.
Jain
, eds.,
Springer
,
Berlin
, pp.
595
601
.
9.
Godwin
,
A.
,
Agnew
,
M.
, and
Stevenson
,
J.
,
2009
, “
Accuracy of Inertial Motion Sensors in Static, Quasistatic, and Complex Dynamic Motion
,”
ASME J. Biomech. Eng.
,
131
(
11
), pp.
1
5
.10.1115/1.4000109
10.
Kim
,
S.
, and
Nussbaum
,
M. A.
,
2013
, “
Performance Evaluation of a Wearable Inertial Motion Capture System for Capturing Physical Exposures During Manual Material Handling Tasks
,”
Ergonomics
,
56
(
2
), pp.
314
326
.10.1080/00140139.2012.742932
11.
Faber
,
G. S.
,
Chang
,
C.-C.
,
Rizun
,
P.
, and
Dennerlein
,
J. T.
,
2013
, “
A Novel Method for Assessing the 3-D Orientation Accuracy of Inertial/Magnetic Sensors
,”
J. Biomech.
,
46
(
15
), pp.
2745
2751
.10.1016/j.jbiomech.2013.07.029
12.
Freitag
,
S.
,
Ellegast
,
R.
,
Dulon
,
M.
, and
Nienhaus
,
A.
,
2007
, “
Quantitative Measurement of Stressful Trunk Postures in Nursing Professions
,”
Ann. Occup. Hyg.
,
51
(
4
), pp.
385
395
.10.1093/annhyg/mem018
13.
Glitsch
,
U.
,
Ottersbach
,
H.
,
Ellegast
,
R.
,
Schaub
,
K.
,
Franz
,
G.
, and
Jaeger
,
M.
,
2007
, “
Physical Workload of Flight Attendants When Pushing and Pulling Trolleys Aboard Aircraft
,”
Int. J. Ind. Ergon.
,
37
(
11/12
), pp.
845
854
.10.1016/j.ergon.2007.07.004
14.
Plamondon
,
A.
,
Delisle
,
A.
,
Larue
,
C.
,
Brouillette
,
D.
,
McFadden
,
D.
,
Desjardins
,
P.
, and
Larivière
,
C.
,
2007
, “
Evaluation of a Hybrid System for Three-Dimensional Measurement of Trunk Posture in Motion
,”
Appl. Ergon.
,
38
(
6
), pp.
697
712
.10.1016/j.apergo.2006.12.006
15.
Curey
,
R.
,
Ash
,
M.
,
Thielman
,
L.
, and
Barker
,
C.
,
2004
, “
Proposed IEEE Inertial Systems Terminology Standard and Other Inertial Sensor Standards
,”
Proceedings of Position Location and Navigation Symposium PLANS 2004
, Monterey, CA, Apr. 26–29, pp.
83
90
.
16.
Schepers
,
H. M.
,
Koopman
,
H. F. J. M.
, and
Veltink
,
P. H.
,
2007
, “
Ambulatory Assessment of Ankle and Foot Dynamics
,”
IEEE Trans. Biomed. Eng.
,
54
(
5
), pp.
895
902
.10.1109/TBME.2006.889769
17.
Rouhani
,
H.
,
Favre
,
J.
,
Crevoisier
,
X.
, and
Aminian
,
K.
,
2012
, “
Measurement of Multi-Segment Foot Joint Angles During Gait Using a Wearable System
,”
ASME J. Biomech. Eng.
,
134
(
6
), p.
061006
.10.1115/1.4006674
18.
Cutti
,
A.
,
Giovanardi
,
A.
,
Rocchi
,
L.
, and
Davalli
,
A.
,
2006
, “
A Simple Test to Assess the Static and Dynamic Accuracy of an Inertial Sensors System for Human Movement Analysis
,”
28th IEEE Engineering in Medicine and Biology Society Annual International Conference
, New York, Aug. 30–Sep 3, pp.
5912
5915
.
19.
Kuipers
,
J. B.
,
2002
,
Quaternions and Rotation Sequences: A Primer with Applications to Orbits, Aerospace and Virtual Reality
,
Princeton University
, Princeton, NJ.
20.
Yun
,
X.
,
Bachmann
,
E.
, and
McGhee
,
R.
,
2008
, “
A Simplified Quaternion-Based Algorithm for Orientation Estimation From Earth Gravity and Magnetic Field Measurements
,”
IEEE Trans. Instrum. Meas.
,
57
(
3
), pp.
638
650
.10.1109/TIM.2007.911646
21.
Klingbeil
,
L.
,
2006
, “
Entwicklung eines modularen und skalierbaren Sensorsystems zur Erfassung von Position und Orientierung bewegter Objekte
,” Ph.D. thesis, Rhenische Friedrich-Wilhems-University, Bonn, Germany.
22.
Kuffner
,
J. J.
,
2004
, “
Effective Sampling and Distance Metrics for 3D Rigid Body Path Planning
,”
IEEE International Conference on Robotics and Automation
, New Orleans, LA, Apr. 26–May 1, pp.
3993
3998
.
23.
Schiefer
,
C.
,
Kraus
,
T.
,
Ochsmann
,
E.
,
Hermanns
,
I.
, and
Ellegast
,
R.
,
2011
, “
3d Human Motion Capturing Based Only on Acceleration and Angular Rate Measurement for Low Extremities
,”
Digital Human Modeling
(Vol. 6777 of Lecture Notes in Computer Science),
V. G.
Duffy
, ed.,
Springer
, Orlando, FL, pp.
195
203
.
24.
Smith
,
S. W.
,
1999
,
The Scientist and Engineer’s Guide to Digital Signal Processing
,
California Technical Publishing
, San Diego, CA.
25.
Gelb
,
A.
, ed.,
1974
,
Applied Optimal Estimation
,
The Analytic Sciences Corporation, The MIT Press, Cambridge, MA.
26.
Favre
,
J.
,
Aissaoui
,
R. B.
,
Jolles
,
B.
,
de Guise
,
J.
, and
Aminian
,
K.
,
2009
, “
Functional Calibration Procedure for 3D Knee Joint Angle Description Using Inertial Sensors
,”
J. Biomech.
,
42
(
14
), pp.
2330
2335
.10.1016/j.jbiomech.2009.06.025
27.
Chardonnens
,
J.
,
Favre
,
J.
, and
Aminian
,
K.
,
2012
, “
An Effortless Procedure to Align the Local Frame of an Inertial Measurement Unit to the Local Frame of Another Motion Capture System
,”
J. Biomech.
,
45
(
13
), pp.
2297
2300
.10.1016/j.jbiomech.2012.06.009
28.
Grood
,
E. S.
, and
Suntay
,
W. J.
,
1983
, “
A Joint Coordinate System for the Clinical Description of Three-Dimensional Motions: Application to the Knee
,”
ASME J. Biomech. Eng.
,
105
(
2
), pp.
136
144
.10.1115/1.3138397
29.
Bland
,
J.
, and
Altman
,
D.
,
1986
, “
Statistical Methods for Assessing Agreement Between Two Methods of Clinical Measurement
,”
Lancet
,
1
, pp.
307
310
.10.1016/S0140-6736(86)90837-8
30.
McLaughlin
,
P.
,
2013
, “
Testing Agreement Between a New Method and the Gold Standard - How do We Test?
,”
J. Biomech.
,
46
(
16
), pp.
2757
2760
.10.1016/j.jbiomech.2013.08.015
31.
El-Zayat
,
B. F.
,
Efe
,
T.
,
Heidrich
,
A.
,
Anetsmann
,
R.
,
Timmesfeld
,
N.
,
Fuchs-Winkelmann
,
S.
, and
Schofer
,
M. D.
,
2013
, “
Objective Assessment, Repeatability, and Agreement of Shoulder ROM With a 3D Gyroscope
,”
BMC Musculoskeletal Disorders
,
14
(
1
), p.
72
.10.1186/1471-2474-14-72
You do not currently have access to this content.