Mechanical behavior of bone is determined by the structure and intrinsic, local material properties of the tissue. However, previously presented knee joint models for evaluation of stresses and strains in joints generally consider bones as rigid bodies or linearly elastic solid materials. The aim of this study was to estimate how different structural and mechanical properties of bone affect the mechanical response of articular cartilage within a knee joint. Based on a cadaver knee joint, a two-dimensional (2D) finite element (FE) model of a knee joint including bone, cartilage, and meniscus geometries was constructed. Six different computational models with varying properties for cortical, trabecular, and subchondral bone were created, while the biphasic fibril-reinforced properties of cartilage and menisci were kept unaltered. The simplest model included rigid bones, while the most complex model included specific mechanical properties for different bone structures and anatomically accurate trabecular structure. Models with different porosities of trabecular bone were also constructed. All models were exposed to axial loading of 1.9 times body weight within 0.2 s (mimicking typical maximum knee joint forces during gait) while free varus–valgus rotation was allowed and all other rotations and translations were fixed. As compared to results obtained with the rigid bone model, stresses, strains, and pore pressures observed in cartilage decreased depending on the implemented properties of trabecular bone. Greatest changes in these parameters (up to −51% in maximum principal stresses) were observed when the lowest modulus for trabecular bone (measured at the structural level) was used. By increasing the trabecular bone porosity, stresses and strains were reduced substantially in the lateral tibial cartilage, while they remained relatively constant in the medial tibial plateau. The present results highlight the importance of long bones, in particular, their mechanical properties and porosity, in altering and redistributing forces transmitted through the knee joint.

References

1.
Turner
,
C. H.
, and
Burr
,
D. B.
,
1993
, “
Basic Biomechanical Measurements of Bone: A Tutorial
,”
Bone
,
14
(
4
), pp.
595
608
.10.1016/8756-3282(93)90081-K
2.
Wolff
,
J.
,
1892
,
Das Gesetz Der Transformation Der Knochen
,
Verlag von August Hirschel
,
Berlin, Germany
.
3.
Frost
,
H. M.
,
1987
, “
Bone “Mass” and the “Mechanostat”: A Proposal
,”
Anat. Rec.
,
219
(
1
), pp.
1
9
.10.1002/ar.1092190104
4.
Poelert
,
S.
,
Valstar
,
E.
,
Weinans
,
H.
, and
Zadpoor
,
A. A.
,
2013
, “
Patient-Specific Finite Element Modeling of Bones
,”
Proc. Inst. Mech. Eng. H
,
227
(
4
), pp.
464
478
.10.1177/0954411912467884
5.
Trabelsi
,
N.
,
Milgrom
,
C.
, and
Yosibash
,
Z.
,
2014
, “
Patient-Specific FE Analyses of Metatarsal Bones With Inhomogeneous Isotropic Material Properties
,”
J. Mech. Behav. Biomed. Mater.
,
29
, pp.
177
189
.10.1016/j.jmbbm.2013.08.030
6.
Koivumaki
,
J. E.
,
Thevenot
,
J.
,
Pulkkinen
,
P.
,
Kuhn
,
V.
,
Link
,
T. M.
,
Eckstein
,
F.
, and
Jamsa
,
T.
,
2012
, “
CT-Based Finite Element Models Can Be Used to Estimate Experimentally Measured Failure Loads in the Proximal Femur
,”
Bone
,
50
(
4
), pp.
824
829
.10.1016/j.bone.2012.01.012
7.
Austman
,
R. L.
,
Milner
,
J. S.
,
Holdsworth
,
D. W.
, and
Dunning
,
C. E.
,
2008
, “
The Effect of the Density-Modulus Relationship Selected to Apply Material Properties in a Finite Element Model of Long Bone
,”
J. Biomech.
,
41
(
15
), pp.
3171
3176
.10.1016/j.jbiomech.2008.08.017
8.
Hambli
,
R.
,
2013
, “
Micro-CT Finite Element Model and Experimental Validation of Trabecular Bone Damage and Fracture
,”
Bone
,
56
(
2
), pp.
363
374
.10.1016/j.bone.2013.06.028
9.
Kadir
,
M. R.
,
Syahrom
,
A.
, and
Ochsner
,
A.
,
2010
, “
Finite Element Analysis of Idealised Unit Cell Cancellous Structure Based on Morphological Indices of Cancellous Bone
,”
Med. Biol. Eng. Comput.
,
48
(
5
), pp.
497
505
.10.1007/s11517-010-0593-2
10.
Parr
,
W. C.
,
Chamoli
,
U.
,
Jones
,
A.
,
Walsh
,
W. R.
, and
Wroe
,
S.
,
2013
, “
Finite Element Micro-Modelling of a Human Ankle Bone Reveals the Importance of the Trabecular Network to Mechanical Performance: New Methods for the Generation and Comparison of 3D Models
,”
J. Biomech.
,
46
(
1
), pp.
200
205
.10.1016/j.jbiomech.2012.11.011
11.
Hambli
,
R.
,
2010
, “
Application of Neural Networks and Finite Element Computation for Multiscale Simulation of Bone Remodeling
,”
ASME J. Biomech. Eng.
,
132
(
11
), p.
114502
.10.1115/1.4002536
12.
Hambli
,
R.
,
2011
, “
Apparent Damage Accumulation in Cancellous Bone Using Neural Networks
,”
J. Mech. Behav. Biomed. Mater.
,
4
(
6
), pp.
868
878
.10.1016/j.jmbbm.2011.03.002
13.
Fields
,
A. J.
,
Eswaran
,
S. K.
,
Jekir
,
M. G.
, and
Keaveny
,
T. M.
,
2009
, “
Role of Trabecular Microarchitecture in Whole-Vertebral Body Biomechanical Behavior
,”
J. Bone Miner. Res.
,
24
(
9
), pp.
1523
1530
.10.1359/jbmr.090317
14.
Donahue
,
T. L.
,
Hull
,
M. L.
,
Rashid
,
M. M.
, and
Jacobs
,
C. R.
,
2002
, “
A Finite Element Model of the Human Knee Joint for the Study of Tibio-Femoral Contact
,”
ASME J. Biomech. Eng.
,
124
(
3
), pp.
273
280
.10.1115/1.1470171
15.
Bao
,
H. R.
,
Zhu
,
D.
,
Gong
,
H.
, and
Gu
,
G. S.
,
2013
, “
The Effect of Complete Radial Lateral Meniscus Posterior Root Tear on the Knee Contact Mechanics: A Finite Element Analysis
,”
J. Orthop. Sci.
,
18
(
2
), pp.
256
263
.10.1007/s00776-012-0334-5
16.
Shirazi
,
R.
, and
Shirazi-Adl
,
A.
,
2009
, “
Computational Biomechanics of Articular Cartilage of Human Knee Joint: Effect of Osteochondral Defects
,”
J. Biomech.
,
42
(
15
), pp.
2458
2465
.10.1016/j.jbiomech.2009.07.022
17.
Pena
,
E.
,
Calvo
,
B.
,
Martinez
,
M. A.
, and
Doblare
,
M.
,
2006
, “
A Three-Dimensional Finite Element Analysis of the Combined Behavior of Ligaments and Menisci in the Healthy Human Knee Joint
,”
J. Biomech.
,
39
(
9
), pp.
1686
1701
.10.1016/j.jbiomech.2005.04.030
18.
Adouni
,
M.
,
Shirazi-Adl
,
A.
, and
Shirazi
,
R.
,
2012
, “
Computational Biodynamics of Human Knee Joint in Gait: From Muscle Forces to Cartilage Stresses
,”
J. Biomech.
,
45
(
12
), pp.
2149
2156
.10.1016/j.jbiomech.2012.05.040
19.
Guess
,
T. M.
,
Thiagarajan
,
G.
,
Kia
,
M.
, and
Mishra
,
M.
,
2010
, “
A Subject Specific Multibody Model of the Knee With Menisci
,”
Med. Eng. Phys.
,
32
(
5
), pp.
505
515
.10.1016/j.medengphy.2010.02.020
20.
Wilson
,
W.
,
Van Donkelaar
,
C. C.
,
Van Rietbergen
,
B.
,
Ito
,
K.
, and
Huiskes
,
R.
,
2004
, “
Stresses in the Local Collagen Network of Articular Cartilage: A Poroviscoelastic Fibril-Reinforced Finite Element Study
,”
J. Biomech.
,
37
(
3
), pp.
357
366
.10.1016/S0021-9290(03)00267-7
21.
Julkunen
,
P.
,
Korhonen
,
R. K.
,
Herzog
,
W.
, and
Jurvelin
,
J. S.
,
2008
, “
Uncertainties in Indentation Testing of Articular Cartilage: A Fibril-Reinforced Poroviscoelastic Study
,”
Med. Eng. Phys.
,
30
(
4
), pp.
506
515
.10.1016/j.medengphy.2007.05.012
22.
Mononen
,
M. E.
,
Julkunen
,
P.
,
Toyras
,
J.
,
Jurvelin
,
J. S.
,
Kiviranta
,
I.
, and
Korhonen
,
R. K.
,
2011
, “
Alterations in Structure and Properties of Collagen Network of Osteoarthritic and Repaired Cartilage Modify Knee Joint Stresses
,”
Biomech. Model. Mechanobiol.
,
10
(
3
), pp.
357
369
.10.1007/s10237-010-0239-1
23.
Li
,
L. P.
,
Soulhat
,
J.
,
Buschmann
,
M. D.
, and
Shirazi-Adl
,
A.
,
1999
, “
Nonlinear Analysis of Cartilage in Unconfined Ramp Compression Using a Fibril Reinforced Poroelastic Model
,”
Clin. Biomech.
,
14
(
9
), pp.
673
682
.10.1016/S0268-0033(99)00013-3
24.
Vaziri
,
A.
,
Nayeb-Hashemi
,
H.
,
Singh
,
A.
, and
Tafti
,
B. A.
,
2008
, “
Influence of Meniscectomy and Meniscus Replacement on the Stress Distribution in Human Knee Joint
,”
Ann. Biomed. Eng.
,
36
(
8
), pp.
1335
1344
.10.1007/s10439-008-9515-y
25.
Mow
,
V. C.
,
Fithian
,
D. C.
, and
Kelly
,
M. A.
,
1990
, “
Fundamentals of Articular Cartilage and Meniscus Biomechanics
,”
Articular Cartilage and Knee Joint Function: Basic Science and Arthroscopy
,
J. W.
Ewing
, ed.,
Raven Press Ltd.
,
New York
, pp.
1
18
.
26.
Danso
,
E. K.
,
Honkanen
,
J. T.
,
Saarakkala
,
S.
, and
Korhonen
,
R. K.
,
2014
, “
Comparison of Nonlinear Mechanical Properties of Bovine Articular Cartilage and Meniscus
,”
J. Biomech.
,
47
(
1
), pp.
200
206
.10.1016/j.jbiomech.2013.09.015
27.
Hengsberger
,
S.
,
Kulik
,
A.
, and
Zysset
,
P.
,
2002
, “
Nanoindentation Discriminates the Elastic Properties of Individual Human Bone Lamellae Under Dry and Physiological Conditions
,”
Bone
,
30
(
1
), pp.
178
184
.10.1016/S8756-3282(01)00624-X
28.
Zysset
,
P. K.
,
Guo
,
X. E.
,
Hoffler
,
C. E.
,
Moore
,
K. E.
, and
Goldstein
,
S. A.
,
1999
, “
Elastic Modulus and Hardness of Cortical and Trabecular Bone Lamellae Measured by Nanoindentation in the Human Femur
,”
J. Biomech.
,
32
(
10
), pp.
1005
1012
.10.1016/S0021-9290(99)00111-6
29.
Rho
,
J. Y.
,
Roy
,
M. E.
, 2nd
,
Tsui
,
T. Y.
, and
Pharr
,
G. M.
,
1999
, “
Elastic Properties of Microstructural Components of Human Bone Tissue as Measured by Nanoindentation
,”
J. Biomed. Mater. Res.
,
45
(
1
), pp.
48
54
.10.1002/(SICI)1097-4636(199904)45:1<48::AID-JBM7>3.0.CO;2-5
30.
Hakulinen
,
M. A.
,
Day
,
J. S.
,
Toyras
,
J.
,
Timonen
,
M.
,
Kroger
,
H.
,
Weinans
,
H.
,
Kiviranta
,
I.
, and
Jurvelin
,
J. S.
,
2005
, “
Prediction of Density and Mechanical Properties of Human Trabecular Bone in Vitro by Using Ultrasound Transmission and Backscattering Measurements at 0.2-6.7 MHz Frequency Range
,”
Phys. Med. Biol.
,
50
(
8
), pp.
1629
1642
.10.1088/0031-9155/50/8/001
31.
Van Rietbergen
,
B.
,
Weinans
,
H.
,
Huiskes
,
R.
, and
Odgaard
,
A.
,
1995
, “
A New Method to Determine Trabecular Bone Elastic Properties and Loading Using Micromechanical Finite-Element Models
,”
J. Biomech.
,
28
(
1
), pp.
69
81
.10.1016/0021-9290(95)80008-5
32.
Ferguson
,
V. L.
,
Bushby
,
A. J.
, and
Boyde
,
A.
,
2003
, “
Nanomechanical Properties and Mineral Concentration in Articular Calcified Cartilage and Subchondral Bone
,”
J. Anat.
,
203
(
2
), pp.
191
202
.10.1046/j.1469-7580.2003.00193.x
33.
Schneider
,
C. A.
,
Rasband
,
W. S.
, and
Eliceiri
,
K. W.
,
2012
, “
NIH Image to ImageJ: 25 Years of Image Analysis
,”
Nat. Methods
,
9
(
7
), pp.
671
675
.10.1038/nmeth.2089
34.
Malo
,
M. K.
,
Rohrbach
,
D.
,
Isaksson
,
H.
,
Toyras
,
J.
,
Jurvelin
,
J. S.
,
Tamminen
,
I. S.
,
Kroger
,
H.
, and
Raum
,
K.
,
2013
, “
Longitudinal Elastic Properties and Porosity of Cortical Bone Tissue Vary With Age in Human Proximal Femur
,”
Bone
,
53
(
2
), pp.
451
458
.10.1016/j.bone.2013.01.015
35.
Julkunen
,
P.
,
Wilson
,
W.
,
Jurvelin
,
J. S.
,
Rieppo
,
J.
,
Qu
,
C. J.
,
Lammi
,
M. J.
, and
Korhonen
,
R. K.
,
2008
, “
Stress-Relaxation of Human Patellar Articular Cartilage in Unconfined Compression: Prediction of Mechanical Response by Tissue Composition and Structure
,”
J. Biomech.
,
41
(
9
), pp.
1978
1986
.10.1016/j.jbiomech.2008.03.026
36.
Benninghoff
,
A.
,
1925
, “
Form Und Bau Der Gelenkknorpel in Ihren Beziehungen Zur Funktion
,”
Z. Zellforsch. Mikrosk. Anat.
,
2
(
5
), pp.
783
862
.10.1007/BF00583443
37.
Julkunen
,
P.
,
Kiviranta
,
P.
,
Wilson
,
W.
,
Jurvelin
,
J. S.
, and
Korhonen
,
R. K.
,
2007
, “
Characterization of Articular Cartilage by Combining Microscopic Analysis With a Fibril-Reinforced Finite-Element Model
,”
J. Biomech.
,
40
(
8
), pp.
1862
1870
.10.1016/j.jbiomech.2006.07.026
38.
Petersen
,
W.
, and
Tillmann
,
B.
,
1998
, “
Collagenous Fibril Texture of the Human Knee Joint Menisci
,”
Anat. Embryol.
,
197
(
4
), pp.
317
324
.10.1007/s004290050141
39.
Bullough
,
P. G.
,
Munuera
,
L.
,
Murphy
,
J.
, and
Weinstein
,
A. M.
,
1970
, “
The Strength of the Menisci of the Knee As It Relates to Their Fine Structure
,”
J. Bone Jt. Surg. Br.
,
52
(
3
), pp.
564
567
.
40.
Wilson
,
W.
,
Van Donkelaar
,
C. C.
,
Van Rietbergen
,
B.
, and
Huiskes
,
R.
,
2005
, “
A Fibril-Reinforced Poroviscoelastic Swelling Model for Articular Cartilage
,”
J. Biomech.
,
38
(
6
), pp.
1195
1204
.10.1016/j.jbiomech.2004.07.003
41.
Tissakht
,
M.
, and
Ahmed
,
A. M.
,
1995
, “
Tensile Stress–Strain Characteristics of the Human Meniscal Material
,”
J. Biomech.
,
28
(
4
), pp.
411
422
.10.1016/0021-9290(94)00081-E
42.
Komistek
,
R. D.
,
Stiehl
,
J. B.
,
Dennis
,
D. A.
,
Paxson
,
R. D.
, and
Soutas-Little
,
R. W.
,
1998
, “
Mathematical Model of the Lower Extremity Joint Reaction Forces Using Kane's Method of Dynamics
,”
J. Biomech.
,
31
(
2
), pp.
185
189
.10.1016/S0021-9290(97)00128-0
43.
Plochocki
,
J. H.
,
Ward
,
C. V.
, and
Smith
,
D. E.
,
2009
, “
Evaluation of the Chondral Modeling Theory Using Fe-Simulation and Numeric Shape Optimization
,”
J. Anat.
,
214
(
5
), pp.
768
777
.10.1111/j.1469-7580.2009.01070.x
44.
Soltz
,
M. A.
, and
Ateshian
,
G. A.
,
1998
, “
Experimental Verification and Theoretical Prediction of Cartilage Interstitial Fluid Pressurization at an Impermeable Contact Interface in Confined Compression
,”
J. Biomech.
,
31
(
10
), pp.
927
934
.10.1016/S0021-9290(98)00105-5
45.
Most
,
E.
,
Axe
,
J.
,
Rubash
,
H.
, and
Li
,
G.
,
2004
, “
Sensitivity of the Knee Joint Kinematics Calculation to Selection of Flexion Axes
,”
J. Biomech.
,
37
(
11
), pp.
1743
1748
.10.1016/j.jbiomech.2004.01.025
46.
Mononen
,
M. E.
,
Jurvelin
,
J. S.
, and
Korhonen
,
R. K.
,
2013
, “
Implementation of a Gait Cycle Loading into Healthy and Meniscectomised Knee Joint Models With Fibril-Reinforced Articular Cartilage
,”
Comput. Methods. Biomech. Biomed. Eng.
,
18
(
2
), pp.
141
152
.10.1080/10255842.2013.783575
47.
Thambyah
,
A.
,
Goh
,
J. C.
, and
De
,
S. D.
,
2005
, “
Contact Stresses in the Knee Joint in Deep Flexion
,”
Med. Eng. Phys.
,
27
(
4
), pp.
329
335
.10.1016/j.medengphy.2004.09.002
48.
Poh
,
S. Y.
,
Yew
,
K. S.
,
Wong
,
P. L.
,
Koh
,
S. B.
,
Chia
,
S. L.
,
Fook-Chong
,
S.
, and
Howe
,
T. S.
,
2012
, “
Role of the Anterior Intermeniscal Ligament in Tibiofemoral Contact Mechanics During Axial Joint Loading
,”
Knee
,
19
(
2
), pp.
135
139
.10.1016/j.knee.2010.12.008
49.
Bai
,
B.
,
Kummer
,
F. J.
,
Sala
,
D. A.
,
Koval
,
K. J.
, and
Wolinsky
,
P. R.
,
2001
, “
Effect of Articular Step-Off and Meniscectomy on Joint Alignment and Contact Pressures for Fractures of the Lateral Tibial Plateau
,”
J. Orthop. Trauma
,
15
(
2
), pp.
101
106
.10.1097/00005131-200102000-00005
50.
Mcerlain
,
D. D.
,
Milner
,
J. S.
,
Ivanov
,
T. G.
,
Jencikova-Celerin
,
L.
,
Pollmann
,
S. I.
, and
Holdsworth
,
D. W.
,
2011
, “
Subchondral Cysts Create Increased Intra-Osseous Stress in Early Knee OA: A Finite Element Analysis Using Simulated Lesions
,”
Bone
,
48
(
3
), pp.
639
646
.10.1016/j.bone.2010.11.010
51.
Papaioannou
,
G.
,
Demetropoulos
,
C. K.
, and
King
,
Y. H.
,
2010
, “
Predicting the Effects of Knee Focal Articular Surface Injury With a Patient-Specific Finite Element Model
,”
Knee
,
17
(
1
), pp.
61
68
.10.1016/j.knee.2009.05.001
52.
Isaksson
,
H.
,
Toyras
,
J.
,
Hakulinen
,
M.
,
Aula
,
A. S.
,
Tamminen
,
I.
,
Julkunen
,
P.
,
Kroger
,
H.
, and
Jurvelin
,
J. S.
,
2011
, “
Structural Parameters of Normal and Osteoporotic Human Trabecular Bone Are Affected Differently by microCT Image Resolution
,”
Osteoporosis Int.
,
22
(
1
), pp.
167
177
.10.1007/s00198-010-1219-0
53.
Kersh
,
M. E.
,
Zysset
,
P. K.
,
Pahr
,
D. H.
,
Wolfram
,
U.
,
Larsson
,
D.
, and
Pandy
,
M. G.
,
2013
, “
Measurement of Structural Anisotropy in Femoral Trabecular Bone Using Clinical-Resolution CT Images
,”
J. Biomech.
,
46
(
15
), pp.
2659
2666
.10.1016/j.jbiomech.2013.07.047
54.
Boutroy
,
S.
,
Bouxsein
,
M. L.
,
Munoz
,
F.
, and
Delmas
,
P. D.
,
2005
, “
In Vivo Assessment of Trabecular Bone Microarchitecture by High-Resolution Peripheral Quantitative Computed Tomography
,”
J. Clin. Endocrinol. Metab.
,
90
(
12
), pp.
6508
6515
.10.1210/jc.2005-1258
55.
Link
,
T. M.
,
Vieth
,
V.
,
Langenberg
,
R.
,
Meier
,
N.
,
Lotter
,
A.
,
Newitt
,
D.
, and
Majumdar
,
S.
,
2003
, “
Structure Analysis of High Resolution Magnetic Resonance Imaging of the Proximal Femur: In Vitro Correlation With Biomechanical Strength and BMD
,”
Calcif. Tissue Int.
,
72
(
2
), pp.
156
165
.10.1007/s00223-001-2132-5
56.
Donnelly
,
E.
,
2011
, “
Methods for Assessing Bone Quality: A Review
,”
Clin. Orthop.
,
469
(
8
), pp.
2128
2138
.10.1007/s11999-010-1702-0
57.
Pahr
,
D. H.
, and
Zysset
,
P. K.
,
2009
, “
A Comparison of Enhanced Continuum FE With Micro FE Models of Human Vertebral Bodies
,”
J. Biomech.
,
42
(
4
), pp.
455
462
.10.1016/j.jbiomech.2008.11.028
58.
Kozanek
,
M.
,
Hosseini
,
A.
,
Liu
,
F.
,
Van De Velde
,
S. K.
,
Gill
,
T. J.
,
Rubash
,
H. E.
, and
Li
,
G.
,
2009
, “
Tibiofemoral Kinematics and Condylar Motion During the Stance Phase of Gait
,”
J. Biomech.
,
42
(
12
), pp.
1877
1884
.10.1016/j.jbiomech.2009.05.003
59.
Mononen
,
M. E.
,
Mikkola
,
M. T.
,
Julkunen
,
P.
,
Ojala
,
R.
,
Nieminen
,
M. T.
,
Jurvelin
,
J. S.
, and
Korhonen
,
R. K.
,
2012
, “
Effect of Superficial Collagen Patterns and Fibrillation of Femoral Articular Cartilage on Knee Joint Mechanics—A 3D Finite Element Analysis
,”
J. Biomech.
,
45
(
3
), pp.
579
587
.10.1016/j.jbiomech.2011.11.003
60.
Zhao
,
D.
,
Banks
,
S. A.
,
D'lima
,
D. D.
,
Colwell
,
C. W.
Jr.
, and
Fregly
,
B. J.
,
2007
, “
In Vivo Medial and Lateral Tibial Loads During Dynamic and High Flexion Activities
,”
J. Orthop. Res.
,
25
(
5
), pp.
593
602
.10.1002/jor.20362
61.
Werner
,
F. W.
,
Ayers
,
D. C.
,
Maletsky
,
L. P.
, and
Rullkoetter
,
P. J.
,
2005
, “
The Effect of Valgus/Varus Malalignment on Load Distribution in Total Knee Replacements
,”
J. Biomech.
,
38
(
2
), pp.
349
355
.10.1016/j.jbiomech.2004.02.024
62.
Moisio
,
K.
,
Chang
,
A.
,
Eckstein
,
F.
,
Chmiel
,
J. S.
,
Wirth
,
W.
,
Almagor
,
O.
,
Prasad
,
P.
,
Cahue
,
S.
,
Kothari
,
A.
, and
Sharma
,
L.
,
2011
, “
Varus-Valgus Alignment: Reduced Risk of Subsequent Cartilage Loss in the Less Loaded Compartment
,”
Arthritis Rheum.
,
63
(
4
), pp.
1002
1009
.10.1002/art.30216
63.
Hakulinen
,
M. A.
,
Day
,
J. S.
,
Toyras
,
J.
,
Weinans
,
H.
, and
Jurvelin
,
J. S.
,
2006
, “
Ultrasonic Characterization of Human Trabecular Bone Microstructure
,”
Phys. Med. Biol.
,
51
(
6
), pp.
1633
1648
.10.1088/0031-9155/51/6/019
64.
Turner
,
C. H.
,
Rho
,
J.
,
Takano
,
Y.
,
Tsui
,
T. Y.
, and
Pharr
,
G. M.
,
1999
, “
The Elastic Properties of Trabecular and Cortical Bone Tissues are Similar: Results From Two Microscopic Measurement Techniques
,”
J. Biomech.
,
32
(
4
), pp.
437
441
.10.1016/S0021-9290(98)00177-8
65.
Baca
,
V.
,
Horak
,
Z.
,
Mikulenka
,
P.
, and
Dzupa
,
V.
,
2008
, “
Comparison of an Inhomogeneous Orthotropic and Isotropic Material Models Used for FE Analyses
,”
Med. Eng. Phys.
,
30
(
7
), pp.
924
930
.10.1016/j.medengphy.2007.12.009
66.
Henak
,
C. R.
,
Anderson
,
A. E.
, and
Weiss
,
J. A.
,
2013
, “
Subject-Specific Analysis of Joint Contact Mechanics: Application to the Study of Osteoarthritis and Surgical Planning
,”
ASME J. Biomech. Eng.
,
135
(
2
), p.
021003
.10.1115/1.4023386
67.
Kujala
,
U. M.
,
Kettunen
,
J.
,
Paananen
,
H.
,
Aalto
,
T.
,
Battie
,
M. C.
,
Impivaara
,
O.
,
Videman
,
T.
, and
Sarna
,
S.
,
1995
, “
Knee Osteoarthritis in Former Runners, Soccer Players, Weight Lifters, and Shooters
,”
Arthritis Rheum.
,
38
(
4
), pp.
539
546
.10.1002/art.1780380413
68.
Miyazaki
,
T.
,
Wada
,
M.
,
Kawahara
,
H.
,
Sato
,
M.
,
Baba
,
H.
, and
Shimada
,
S.
,
2002
, “
Dynamic Load at Baseline Can Predict Radiographic Disease Progression in Medial Compartment Knee Osteoarthritis
,”
Ann. Rheum. Dis.
,
61
(
7
), pp.
617
622
.10.1136/ard.61.7.617
69.
Hart
,
D. J.
,
Mootoosamy
,
I.
,
Doyle
,
D. V.
, and
Spector
,
T. D.
,
1994
, “
The Relationship Between Osteoarthritis and Osteoporosis in the General Population: The Chingford Study
,”
Ann. Rheum. Dis.
,
53
(
3
), pp.
158
162
.10.1136/ard.53.3.158
You do not currently have access to this content.