Performing planar biaxial testing and using nominal stress–strain curves for soft-tissue characterization is most suitable when (1) the test produces homogeneous strain fields, (2) fibers are aligned with the coordinate axes, and (3) strains are measured far from boundaries. Some tissue types [such as lamellae of the annulus fibrosus (AF)] may not allow for these conditions to be met due to their natural geometry and constitution. The objective of this work was to develop and test a method utilizing a surface displacement field, grip force-stretch data, and finite-element (FE) modeling to facilitate analysis of such complex samples. We evaluated the method by regressing a simple structural model to simulated and experimental data. Three different tissues with different characteristics were used: Superficial pectoralis major (SPM) (anisotropic, aligned with axes), facet capsular ligament (FCL) (anisotropic, aligned with axes, bone attached), and a lamella from the AF (anisotropic, aligned off-axis, bone attached). We found that the surface displacement field or the grip force-stretch data information alone is insufficient to determine a unique parameter set. Utilizing both data types provided tight confidence regions (CRs) of the regressed parameters and low parameter sensitivity to initial guess. This combined fitting approach provided robust characterization of tissues with varying fiber orientations and boundaries and is applicable to tissues that are poorly suited to standard biaxial testing. The structural model, a set of C++ finite-element routines, and a Matlab routine to do the fitting based on a set of force/displacement data is provided in the on-line supplementary material.

References

References
1.
Eilaghi
,
A.
,
Flanagan
,
J. G.
,
Brodland
,
G. W.
, and
Ethier
,
C. R.
,
2009
, “
Strain Uniformity in Biaxial Specimens is Highly Sensitive to Attachment Details
,”
ASME J. Biomech. Eng.
,
131
(9)
, p.
091003
.10.1115/1.3148467
2.
Sun
,
W.
,
Sacks
,
M. S.
, and
Scott.
,
M. J.
,
2005
, “
Effects of Boundary Conditions on the Estimation of the Planar Biaxial Mechanical Properties of Soft Tissues
,”
ASME J. Biomech. Eng.
,
127
(4)
, pp.
709
715
.10.1115/1.1933931
3.
Fung
,
Y. C.
,
1973
, “
Biorheology of Soft Tissues
,”
Biorheology
,
10
(
2
), pp.
139
155
.
4.
Sacks
,
M. S.
, and
Gloeckner
,
D. C.
,
1999
, “
Quantification of the Fiber Architecture and Biaxial Mechanical Behavior of Porcine Intestinal Submucosa
,”
J. Biomed. Mater. Res.
,
46
(
1
), pp.
1
10
.10.1002/(SICI)1097-4636(199907)46:1<1::AID-JBM1>3.0.CO;2-7
5.
Waldman
,
S.
, and
Lee
,
J.
,
2002
, “
Boundary Conditions During Biaxial Testing of Planar Connective Tissues Part II Fiber Orientation
,”
J. Mater. Sci. Lett.
,
21
(
15
), pp.
1215
1221
.10.1023/A:1016576603938
6.
Waldman
,
S.
,
Sacks
,
M.
, and
Lee
,
J.
,
2002
, “
Boundary Conditions During Biaxial Testing of Planar Connective Tissues. Part 1: Dynamic Behavior
,”
J. Mater. Sci.: Mater. Med.
,
13
(
10
), pp.
933
938
.10.1023/A:1019896210320
7.
Jacobs
,
N. T.
,
Cortes
,
D. H.
,
Vresilovic
,
E. J.
, and
Elliott
,
D. M.
,
2013
, “
Biaxial Tension of Fibrous Tissue: Using Finite Element Methods to Address Experimental Challenges Arising From Boundary Conditions and Anisotropy
,”
ASME J. Biomech. Eng.
,
135
(2)
, p.
021004
.10.1115/1.4023503
8.
Miller
,
K. S.
,
Connizzo
,
B. K.
,
Feeney
,
E.
,
Tucker
,
J. J.
, and
Soslowsky
,
L. J.
,
2012
, “
Examining Differences in Local Collagen Fiber Crimp Frequency Throughout Mechanical Testing in a Developmental Mouse Supraspinatus Tendon Model
,”
ASME J. Biomech. Eng.
,
134
(4)
, p.
041004
.10.1115/1.4006538
9.
Miller
,
K. S.
,
Edelstein
,
L.
,
Connizzo
,
B. K.
, and
Soslowsky
,
L. J.
,
2012
, “
Effect of Preconditioning and Stress Relaxation on Local Collagen Fiber Re-Alignment: Inhomogeneous Properties of Rat Supraspinatus Tendon
,”
ASME J. Biomech. Eng.
,
134
(3)
, p.
031007
.10.1115/1.4006340
10.
Sacks
,
M. S.
,
2000
, “
Biaxial Mechanical Evaluation of Planar Biological Materials
,”
J. Elast.
,
61
(1–3)
, pp.
199
245
.10.1023/A:1010917028671
11.
Skaggs
,
D. L.
,
Weidenbaum
,
M.
,
Latridis
,
J. C.
,
Ratcliffe
,
A.
, and
Mow
, V
. C.
,
1994
, “
Regional Variation in Tensile Properties and Biochemical Composition of the Human Lumbar Anulus Fibrosus
,”
Spine
,
19
(
12
), pp.
1307
1417
.10.1097/00007632-199406000-00002
12.
Holzapfel
,
G. A.
,
Schulze-Bauer
,
C. A. J.
,
Feigl
,
G.
, and
Regitnig
,
P.
,
2005
, “
Single Lamellar Mechanics of the Human Lumbar Anulus Fibrosus
,”
Biomech. Model. Mechanobiol.
,
3
(
3
), pp.
125
140
.10.1007/s10237-004-0053-8
13.
Pezowicz
,
C.
,
2010
, “
Analysis of Selected Mechanical Properties of Intervertebral Disc Annulus Fibrosus in Macro and Microscopic Scale
,”
J. Theor. Appl. Mech.
,
48
, pp.
917
932
.
14.
Bass
,
E. C.
,
Ashford
,
F. A.
,
Segal
,
M. R.
, and
Lotz
,
J. C.
,
2004
, “
Biaxial Testing of Human Annulus Fibrosus and Its Implications for a Constitutive Formulation
,”
Ann. Biomed. Eng.
,
32
(
9
), pp.
1231
1242
.10.1114/B:ABME.0000039357.70905.94
15.
O'Connell
,
G. D.
,
Sen
,
S.
, and
Elliott
,
D. M.
,
2012
, “
Human Annulus Fibrosus Material Properties From Biaxial Testing and Constitutive Modeling Are Altered With Degeneration
,”
Biomech. Model. Mechanobiol.
,
11
(
3–4
), pp.
493
503
.10.1007/s10237-011-0328-9
16.
Malgorzata
,
Z.
, and
Pezowicz
,
C.
,
2013
, “
Spinal Sections and Regional Variations in the Mechanical Properties of the Annulus Fibrosus Subjected to Tensile Loading
,”
Acta Bioeng. Biomech.
,
15
(1)
, pp. 51–59.
17.
Elliott
,
D. M.
, and
Setton
,
L. A.
,
2001
, “
Anisotropic and Inhomogeneous Tensile Behavior of the Human Anulus Fibrosus: Experimental Measurement and Material Model Predictions
,”
ASME J. Biomech. Eng.
,
123
(
3
), pp.
256
263
.10.1115/1.1374202
18.
Gaudette
,
G. R.
,
Todaro
,
J.
,
Krukenkamp
,
I. B.
, and
Chiang
,
F.-P.
,
2001
, “
Computer Aided Speckle Interferometry: A Technique for Measuring Deformation of the Surface of the Heart
,”
Ann. Biomed. Eng.
,
29
(
9
), pp.
775
780
.10.1114/1.1397785
19.
Doehring
,
T. C.
,
Kahelin
,
M.
, and
Vesely
,
I.
,
2009
, “
Direct Measurement of Nonuniform Large Deformations in Soft Tissues During Uniaxial Extension
,”
ASME J. Biomech. Eng.
,
131
(6)
, p.
061001
.10.1115/1.3116155
20.
Quinn
,
K. P.
, and
Winkelstein
,
B. A.
,
2010
, “
Full Field Strain Measurements of Collagenous Tissue by Tracking Fiber Alignment Through Vector Correlation
,”
J. Biomech.
,
43
(
13
), pp.
2637
2640
.10.1016/j.jbiomech.2010.05.008
21.
Raghupathy
,
R.
,
Witzenburg
,
C.
,
Lake
,
S. P.
,
Sander
,
E. A.
, and
Barocas
,
V. H.
,
2011
, “
Identification of Regional Mechanical Anisotropy in Soft Tissue Analogs
,”
ASME J. Biomech. Eng.
,
133
(9)
, p.
091011
.10.1115/1.4005170
22.
Keyes
,
J. T.
,
Haskett
,
D. G.
,
Utzinger
,
Urs.
,
Azhar
,
M.
, and
Geest
,
J. P. V.
,
2011
, “
Adaptation of a Planar Microbiaxial Optomechanical Device for the Tubular Biaxial Microstructural and Macroscopic Characterization of Small Vascular Tissues
,”
ASME J. Biomech. Eng.
,
133
(7)
, p.
075001
.10.1115/1.4004495
23.
Witzenburg
,
C.
,
Raghupathy
,
R.
,
Kren
,
S. M.
,
Taylor
,
D. A.
, and
Barocas
,
V. H.
,
2012
, “
Mechanical Changes in the Rat Right Ventricle With Decellularization
,”
J. Biomech.
,
45
(
5
), pp.
842
849
.10.1016/j.jbiomech.2011.11.025
24.
Li
,
W. G.
,
Luo
,
X. Y.
,
Hill
,
N. A.
,
Ogden
,
R. W.
,
Smythe
,
A.
,
Majeed
,
A. W.
, and
Bird
,
N.
,
2012
, “
A Quasi-Nonlinear Analysis of the Anisotropic Behaviour of Human Gallbladder Wall
,”
ASME J. Biomech. Eng.
,
134
(10)
, p.
101009
.10.1115/1.4007633
25.
Barbone
,
P. E.
, and
Oberai
,
A. A.
,
2007
, “
Elastic Modulus Imaging: Some Exact Solutions of the Compressible Elastography Inverse Problem
,”
Phys. Med. Biol.
,
52
(
6
), pp.
1577
1593
.10.1088/0031-9155/52/6/003
26.
Pellot-Barakat
,
C.
,
Frédérique
,
F.
,
Insana
,
M. F.
, and
Herment
,
A.
,
2004
, “
Ultrasound Elastography Based on Multiscale Estimations of Regularized Displacement Fields
,”
IEEE Trans. Med. Imaging
,
23
(
2
), pp.
153
163
.10.1109/TMI.2003.822825
27.
Kim
,
J.
, and
Srinivasan
,
M. A.
,
2005
, “
Characterization of Viscoelastic Soft Tissue Properties From in Vivo Animal Experiments and Inverse FE Parameter Estimation
,”
Medical Image Computing and Computer-Assisted Intervention – MICCAI (Lecture Notes in Computer Science)
,
J. S.
Duncan
and
G.
Gerig
, eds.,
Springer
,
Berlin, Heidelberg
, Vol.
3750
, pp.
595
606
.
28.
Raghupathy
,
R.
, and
Barocas
,
V. H.
,
2009
, “
A Closed-Form Structural Model of Planar Fibrous Tissue Mechanics
,”
J. Biomech.
,
42
(
10
), pp.
1424
1428
.10.1016/j.jbiomech.2009.04.005
29.
King
,
M. R.
, and
Mody
,
N. A.
,
2010
, Numerical and Statistical Methods for Bioengineering: Applications in MATLAB,
Cambridge University
, http://books.google.com/books?id = gEDRKeoIHmcC&pgis = 1.
30.
Draper
,
N. R.
, and
Smith
,
H.
,
1981
,
Applied Regression Analysis (Applied Regression Analysis)
,
2nd ed.
,
Wiley
, New York, Vol.
709
.
31.
See the
Supplemental Data
” tab for this paper on the ASME Digital Collection
.10.1115/1.4028193
32.
Knapp
,
D. M.
,
Barocas
,
V. H.
,
Moon
,
A. G.
,
Yoo
,
K.
,
Petzold
,
L. R.
, and
Tranquillo
,
R. T.
,
1997
, “
Rheology of Reconstituted Type I Collagen Gel in Confined Compression
,”
J. Rheol.
,
41
(
5
), pp.
971
993
.10.1122/1.550817
33.
Nagel
,
T. M.
,
Raghupathy
,
R.
,
Ellingson
,
A. M.
,
Nuckley
,
D. J.
, and
Barocas
,
V. H.
,
2011
, “
A Non-Linear Model to Describe the Material Properties of Single Lamellae in the Human Annulus Fibrosus
,”
ASME
Paper No. SBC2011-53848.10.1115/SBC2011-53848
34.
Raghupathy
,
R.
,
Wiztenburg
,
C.
,
Lake
,
S. P.
,
Sander
,
E. A.
, and
Barocas
,
V. H.
,
2011
, “
Identification of Regional Mechanical Anisotropy in Soft Tissue Analogs
,”
ASME J. Biomech. Eng.
,
133
(9)
, p.
091011
.10.1115/1.4005170
35.
Boriek
,
A. M.
,
Rodarte
,
J. R.
, and
Reid
,
M. B.
,
2001
, “
Shape and Tension Distribution of the Passive Rat Diaphragm
,”
Am. J. Physiol.: Regul., Integr. Comp. Physiol.
,
280
(
1
), pp.
R33
R41
.
36.
Flynn
,
C.
, and
Rubin
,
M. B.
,
2014
, “
An Anisotropic Discrete Fiber Model With Dissipation for Soft Biological Tissues
,”
Mech. Mater.
,
68
, pp.
217
227
.10.1016/j.mechmat.2013.07.009
37.
Sun
,
W.
, and
Sacks
,
M. S.
,
2005
, “
Finite Element Implementation of a Generalized Fung-Elastic Constitutive Model for Planar Soft Tissues
,”
Biomech. Model. Mechanobiol.
,
4
(
2–3
), pp.
190
199
.10.1007/s10237-005-0075-x
38.
Wan
,
C.
,
Hao
,
Z.
, and
Wen
,
S.
,
2013
, “
The Effect of the Variation in ACL Constitutive Model on Joint Kinematics and Biomechanics Under Different Loads: A Finite Element Study
,”
ASME J. Biomech. Eng.
,
135
(4)
, p.
041002
.10.1115/1.4023696
39.
Martufi
,
G.
, and
Christian
,
G. T.
,
2013
, “
Review: The Role of Biomechanical Modeling in the Rupture Risk Assessment for Abdominal Aortic Aneurysms
,”
ASME J. Biomech. Eng.
,
135
(2)
, p.
021010
.10.1115/1.4023254
40.
Avril
,
S.
,
Badel
,
P.
,
Gabr
,
M.
,
Sutton
,
M. A.
, and
Lessner
,
S. M.
,
2013
, “
Biomechanics of Porcine Renal Arteries and Role of Axial Stretch
,”
ASME J. Biomech. Eng.
,
135
(8)
, p.
081007
.10.1115/1.4024685
41.
Raghupathy
,
R.
, and
Barocas
,
V. H.
,
2010
, “
Generalized Anisotropic Inverse Mechanics for Soft Tissues
,”
ASME J. Biomech. Eng.
,
132
(8)
, p.
081006
.10.1115/1.4001257
You do not currently have access to this content.