Anterior lumbar plate (ALP) systems have been widely used as an effective interbody fusion device for treating spinal cord compression. However, clinical complications, such as implant loosening and breakage, still occur. Past studies have investigated the effects of the screw orientation on the interfacial strength, but these studies were inconsistent. The purpose of this study was to identify an ALP system with excellent interfacial strength by varying the screw orientation. Three-dimensional finite element models of L4–L5 segments with an ALP system were first constructed. A neurogenetic algorithm, which combines artificial neural networks and genetic algorithms, was subsequently developed to discover the optimum plate design. Finally, biomechanical tests were conducted to validate the results of the finite element models and the engineering algorithm. The results indicated that the interfacial strength of the optimum plate design obtained using the neurogenetic algorithm was excellent compared with the other designs and that all of the locking screws should be inserted divergently. Both the numerical and experimental outcomes can provide clinical suggestions to surgeons and help them to understand the interfacial strength of ALP systems in terms of the screw orientation.

References

References
1.
Veeravagu
,
A.
,
Patil
,
C. G.
,
Lad
,
S. P.
, and
Boakye
,
M.
,
2009
, “
Risk Factors for Postoperative Spinal Wound Infections after Spinal Decompression and Fusion Surgeries
,”
Spine
,
34
(
17
), pp.
1869
1872
.10.1097/BRS.0b013e3181adc989
2.
Nichols
,
T. A.
,
Yantzer
,
B. K.
,
Alameda
,
S.
,
Johnson
,
W. M.
, and
Guiot
,
B. H.
,
2007
, “
Augmentation of an Anterior Lumbar Interbody Fusion With an Anterior Plate or Pedicle Screw Fixation: A Comparative Biomechanical in vitro Study
,”
J. Neurosurg.
,
6
(
3
), pp.
267
271
.10.3171/spi.2007.6.3.267
3.
Beaubien
,
B. P.
,
Derincek
,
A.
,
Lew
,
W. D.
, and
Wood
,
K. B.
,
2005
, “
In Vitro, Biomechanical Comparison of an Anterior Lumbar Interbody Fusion With an Anteriorly Placed, Low-Profile Lumbar Plate and Posteriorly Placed Pedicle Screws or Translaminar Screws
,”
Spine
,
30
(
16
), pp.
1846
1851
.10.1097/01.brs.0000174275.95104.12
4.
Johnson
,
W. M.
,
Nichols
,
T. A.
,
Jethwani
,
D.
, and
Guiot
,
B. H.
,
2007
, “
In Vitro Biomechanical Comparison of an Anterior and Anterolateral Lumbar Plate With Posterior Fixation Following Single-Level Anterior Lumbar Interbody Fusion
,”
J. Neurosurg.
,
7
(
3
), pp.
332
335
.10.3171/spi-07/09/332
5.
Zahrai
,
A.
,
Chiles Iii
,
J. W.
,
Thakur
,
N. A.
,
Boden
,
S. D.
,
Heller
,
J. G.
, and
Refai
,
D.
,
2013
, “
Fusion Rates and Cost Analysis of Stand-Alone Anterior Lumbar Interbody Fusion Versus Anterior Lumbar Interbody Fusion With Supplemental Anterior or Posterior Instrumentation
,”
Spine J.
,
13
(
9
), pp.
S143
S144
.10.1016/j.spinee.2013.07.367
6.
Horsting
,
P. P.
,
Pavlov
,
P. W.
,
Jacobs
,
W. C. H.
,
Obradov-Rajic
,
M.
, and
De Kleuver
,
M.
,
2012
, “
Good Functional Outcome and Adjacent Segment Disc Quality 10 Years After Single-Level Anterior Lumbar Interbody Fusion With Posterior Fixation
,”
Global Spine J.
,
2
(
1
), pp.
21
26
.10.1055/s-0032-1307264
7.
Matsuzaki
,
H.
,
Tokuhashi
,
Y.
,
Matsumoto
,
F.
,
Hoshino
,
M.
,
Kiuchi
,
T.
, and
Toriyama
,
S.
,
1990
, “
Problems and Solutions of Pedicle Screw Plate Fixation of Lumbar Spine
,”
Spine
,
15
(
11
), pp.
1159
1165
.10.1097/00007632-199011010-00014
8.
Ploumis
,
A.
,
Wu
,
C.
,
Fischer
,
G.
,
Mehbod
,
A. A.
,
Wu
,
W.
,
Faundez
,
A.
, and
Transfeldt
,
E. E.
,
2008
, “
Biomechanical Comparison of Anterior Lumbar Interbody Fusion and Transforaminal Lumbar Interbody Fusion
,”
J. Spinal Disord. Tech.
,
21
(
2
), pp.
120
125
.10.1097/BSD.0b013e318060092f
9.
Wähnert
,
D.
,
Windolf
,
M.
,
Brianza
,
S.
,
Rothstock
,
S.
,
Radtke
,
R.
, and
Brighenti
,
V.
,
2011
, “
A Comparison of Parallel and Diverging Screw Angles in the Stability of Locked Plate Constructs
,”
J. Bone Joint Surg. Brit.
,
93
(
9
), pp.
1259
1264
.10.1302/0301-620X.93B9.26721
10.
Rios
,
D.
,
Patacxil
,
W. M.
,
Palmer
,
D. K.
,
Williams
,
P. A.
,
Cheng
,
W. K.
, and
İnceoğlu
,
S.
,
2012
, “
Pullout Analysis of a Lumbar Plate With Varying Screw Orientations: Experimental and Computational Analyses
,”
Spine
,
37
(
16
), pp.
E942
E948
.10.1097/BRS.0b013e318254155a
11.
Fowlkes
,
W. Y.
, and
Creveling
,
C. M.
,
1995
,
Engineering Methods for Robust Production Design Using Taguchi Method in Technology and Product Development
,
Addison Wesley, Reading
,
MA
.
12.
Mitchell
,
M.
,
1996
,
An Introduction to Genetic Algorithms
,
Bradford
,
Cambridge, MA
.
13.
Jahng
,
T. A.
,
Kim
,
Y. E.
, and
Moon
,
K. Y.
,
2013
, “
Comparison of the Biomechanical Effect of Pedicle-Based Dynamic Stabilization: A Study Using Finite Element Analysis
,”
Spine J.
,
13
(
1
), pp.
85
94
.10.1016/j.spinee.2012.11.014
14.
Rohlmann
,
A.
,
Zander
,
T.
, and
Bergmann
,
G.
,
2006
, “
Effects of Fusion-Bone Stiffness on the Mechanical Behavior of the Lumbar Spine After Vertebral Body Replacement
,”
Clin. Biomech.
,
21
(
3
), pp.
221
227
.10.1016/j.clinbiomech.2005.10.012
15.
Chao
,
C. K.
,
Lin
,
J.
,
Putra
,
S. T.
, and
Hsu
,
C. C.
,
2010
, “
A Neurogenetic Approach to a Multiobjective Design Optimization of Spinal Pedicle Screws
,”
ASME J. Biomed. Eng.
,
132
(
9
), p.
091006
.10.1115/1.4001887
16.
Hsu
,
C. C.
,
Lin
,
J.
, and
Chao
,
C. K.
,
2011
, “
Comparison of Multiple Linear Regression and Artificial Neural Network in Developing the Objective Functions of the Orthopaedic Screws
,”
Comput. Methods Prog. Biomed.
,
104
(
3
), pp.
341
348
.10.1016/j.cmpb.2010.11.004
17.
Hambli
,
R.
,
Katerchi
,
H.
, and
Benhamou
,
C. L.
,
2011
, “
Multiscale Methodology for Bone Remodelling Simulation Using Coupled Finite Element and Neural Network Computation
,”
Biomech. Model. Mechanobiol.
,
10
(
1
), pp.
133
145
.10.1007/s10237-010-0222-x
18.
Shukla
,
S. K.
,
Tiwari
,
M. K.
,
Wan
,
H. D.
, and
Shankar
,
R.
,
2010
, “
Optimization of the Supply Chain Network: Simulation, Taguchi, and Psychoclonal Algorithm Embedded Approach
,”
Comput. Ind. Eng.
,
58
(
1
), pp.
29
39
.10.1016/j.cie.2009.07.016
19.
Asiltürk
,
İ.
, and
Çunkaş
,
M.
,
2011
, “
Modeling and Prediction of Surface Roughness in Turning Operations Using Artificial Neural Network and Multiple Regression Method
,”
Expert Syst. Appl.
,
38
(
5
), pp.
5826
5832
.10.1016/j.eswa.2010.11.041
20.
Liu
,
D.
,
Wu
,
Z. X.
,
Pan
,
X. M.
,
Fu
,
S. C.
,
Gao
,
M. X.
,
Shi
,
L.
, and
Lei
,
W.
,
2011
, “
Biomechanical Comparison of Different Techniques in Primary Spinal Surgery in Osteoporotic Cadaveric Lumbar Vertebrae: Expansive Pedicle Screw Versus Polymethylmethacrylate-Augmented Pedicle Screw
,”
Arch. Orthop. Trauma Surg.
,
131
(
9
), pp.
1227
1232
.10.1007/s00402-011-1290-9
21.
Liljenqvist
,
U.
,
Hackenberg
,
L.
,
Link
,
T.
, and
Halm
,
H.
,
2001
, “
Pullout Strength of Pedicle Screws Versus Pedicle and Laminar Hooks in the Thoracic Spine
,”
Acta Orthop. Belg.
,
67
(
2
), pp.
157
163
. Available at: http://www.actaorthopaedica.be/acta/article.asp?lang=en&navid=244&id=4622&mod=Acta
22.
Mehta
,
H.
,
Santos
,
E.
,
Ledonio
,
C.
,
Sembrano
,
J.
,
Ellingson
,
A.
,
Pare
,
P.
,
Murrell
,
B.
, and
Nuckley
,
D. J.
,
2012
, “
Biomechanical Analysis of Pedicle Screw Thread Differential Design in an Osteoporotic Cadaver Model
,”
Clin. Biomech.
,
27
(
3
), pp.
234
240
.10.1016/j.clinbiomech.2011.10.004
23.
Bertollo
,
N.
,
Milne
,
H. R. M.
,
Ellis
,
L. P.
,
Stephens
,
P. C.
,
Gillies
,
R. M.
, and
Walsh
,
W. R.
,
2010
, “
A Comparison of the Thermal Properties of 2- and 3-Fluted Drills and the Effects on Bone Cell Viability and Screw Pull-out Strength in an Ovine Model
,”
Clin. Biomech.
,
25
(
6
), pp.
613
617
.10.1016/j.clinbiomech.2010.02.007
24.
Seller
,
K.
,
Wahl
,
D.
,
Wild
,
A.
,
Krauspe
,
R.
,
Schneider
,
E.
, and
Linke
,
B.
,
2007
, “
Pullout Strength of Anterior Spinal Instrumentation: A Product Comparison of Seven Screws in Calf Vertebral Bodies
,”
Eur. Spine J.
,
16
(
7
), pp.
1047
1054
.10.1007/s00586-007-0307-0
25.
Patel
,
P. S. D.
,
Shepherd
,
D. E. T.
, and
Hukins
,
D. W. L.
,
2010
, “
The Effect of Screw Insertion Angle and Thread Type on the Pullout Strength of Bone Screws in Normal and Osteoporotic Cancellous Bone Models
,”
Med. Eng. Phys.
,
32
(
8
), pp.
822
828
.10.1016/j.medengphy.2010.05.005
26.
Hsu
,
C. C.
,
Chao
,
C. K.
,
Wang
,
J. L.
,
Hou
,
S. M.
,
Tsai
,
Y. T.
, and
Lin
,
J.
,
2005
, “
Increase of Pullout Strength of Spinal Pedicle Screws With Conical Core: Biomechanical Tests and Finite Element Analyses
,”
J. Orthop. Res.
,
23
(
4
), pp.
788
794
.10.1016/j.orthres.2004.11.002
27.
Zhang
,
Q. H.
,
Tan
,
S. H.
, and
Chou
,
S. M.
,
2006
, “
Effects of Bone Materials on the Screw Pull-out Strength in Human Spine
,”
Med. Eng. Phys.
,
28
(
8
), pp.
795
801
.10.1016/j.medengphy.2005.11.009
28.
Palmer
,
D. K.
,
Rios
,
D.
,
Patacxil
,
W. M.
,
Williams
,
P. A.
,
Cheng
,
W. K.
, and
İnceoğlu
,
S.
,
2012
, “
Pullout of a Lumbar Plate With Varying Screw Lengths
,”
Int. J. Spine Surg.
,
6
(
1
), pp.
8
12
.10.1016/j.ijsp.2011.12.002
29.
Zdero
,
R.
, and
Schemitsch
,
E. H.
,
2008
, “
The Effect of Screw Pullout Rate on Screw Purchase in Synthetic Cancellous Bone
,”
ASME J. Biomed. Eng.
,
131
(
2
), p.
024501
.10.1115/1.3005344
You do not currently have access to this content.