Although it is known vocal fold adduction is achieved through laryngeal muscle activation, it is still unclear how interaction between individual laryngeal muscle activations affects vocal fold adduction and vocal fold stiffness, both of which are important factors determining vocal fold vibration and the resulting voice quality. In this study, a three-dimensional (3D) finite element model was developed to investigate vocal fold adduction and changes in vocal fold eigenfrequencies due to the interaction between the lateral cricoarytenoid (LCA) and thyroarytenoid (TA) muscles. The results showed that LCA contraction led to a medial and downward rocking motion of the arytenoid cartilage in the coronal plane about the long axis of the cricoid cartilage facet, which adducted the posterior portion of the glottis but had little influence on vocal fold eigenfrequencies. In contrast, TA activation caused a medial rotation of the vocal folds toward the glottal midline, resulting in adduction of the anterior portion of the glottis and significant increase in vocal fold eigenfrequencies. This vocal fold-stiffening effect of TA activation also reduced the posterior adductory effect of LCA activation. The implications of the results for phonation control are discussed.

References

References
1.
Klatt
,
D. H.
, and
Klatt
,
L. C.
,
1990
, “
Analysis, Synthesis and Perception of Voice Quality Variations Among Male and Female Talkers
,”
J. Acoust. Soc. Am.
,
87
, pp.
820
856
.10.1121/1.398894
2.
Kreiman
,
J.
, and
Sidtis
,
D.
,
2011
,
Foundations of Voice Studies: An Interdisciplinary Approach to Voice Production and Perception
,
Wiley-Blackwell
,
Hoboken, NJ
.
3.
Zhang
,
Z
.,
2011
, “
Restraining Mechanisms in Regulating Glottal Closure During Phonation
,”
J. Acoust. Soc. Am.
,
130
, pp.
4010
4019
.10.1121/1.3658477
4.
Hirano
,
M
.,
1974
, “
Morphological Structure of the Vocal Fold and Its Variations
,”
Folia Phoniatr.
,
26
(2)
, pp.
89
94
.10.1159/000263771
5.
Hirano
,
M.
, and
Kakita
,
Y.
,
1985
, “
Cover-Body Theory of Vocal Fold Vibration
,”
Speech Science: Recent Advances
,
R. G.
Daniloff
, ed.,
College-Hill Press
,
San Diego, CA
, pp.
1
46
.
6.
Titze
,
I. R.
, and
Talkin
,
D. T.
,
1979
, “
A Theoretical Study of the Effects of Various Laryngeal Configurations on the Acoustics of Phonation
,”
J. Acoust. Soc. Am.
,
66
(1)
, pp.
60
74
.10.1121/1.382973
7.
van den Berg
,
J. W.
, and
Tan
,
T. S.
,
1959
, “
Results of Experiments With Human Larynxes
,”
Pract. Otorhinolaryngol.
,
21
, pp.
425
450
.
8.
Bateman
,
H. E.
, and
Mason
,
R. B.
,
1984
,
Applied Anatomy and Physiology of the Speech and Hearing Mechanism
,
Charles C Thomas
,
Springfield, IL
.
9.
Chhetri
,
D.
,
Neubauer
,
J.
, and
Berry
,
D.
,
2012
, “
Neuromuscular Control of Fundamental Frequency and Glottal Posture at Phonation Onset
,”
J. Acoust. Soc. Am.
,
131
(2)
, pp.
1401
1412
.10.1121/1.3672686
10.
Choi
,
H.
,
Berke
,
G.
,
Ye
,
M.
, and
Kreiman
,
J.
,
1993
, “
Function of the Thyroarytenoid Muscle in a Canine Laryngeal Model
,”
Ann. Otol., Rhinol. Laryngol.
,
102
, pp.
769
776
.
11.
Chen
,
T.
,
Chodara
,
A. M.
,
Sprecher
,
A. J.
,
Fang
,
F.
,
Song
,
W.
,
Tao
,
C.
, and
Jiang
,
J. J.
,
2012
, “
A New Method of Reconstructing the Human Laryngeal Architecture Using Micro-MRI
,”
J. Voice
,
26
(5)
, pp.
555
562
.10.1016/j.jvoice.2011.03.012
12.
Kasperbauer
,
J. L.
,
1998
, “
A Biomechanical Study of the Human Cricoarytenoid Joint
,”
Laryngoscope
,
108
(11)
, pp.
1704
1711
.10.1097/00005537-199811000-00021
13.
Selbie
,
W. S.
,
Zhang
,
L.
,
Levine
,
W. S.
, and
Ludlow
,
C. L.
,
1998
, “
Using Joint Geometry to Determine the Motion of the Cricoarytenoid Joint
,”
J. Acoust. Am.
,
103
(2)
, pp.
1115
1127
.10.1121/1.421223
14.
Selbie
,
W. S.
,
Gewalt
,
S. L.
, and
Ludlow
,
C. L.
,
2002
, “
Developing an Anatomical Model of the Human Laryngeal Cartilages From Magnetic Resonance Imaging
,”
J. Acoust. Soc. Am.
,
112
(3)
, pp.
1077
1090
.10.1121/1.1501586
15.
Storck
,
C.
,
Juergens
,
P.
,
Fischer
,
C.
,
Wolfensberger
,
M.
,
Honegger
,
F.
,
Sorantin
,
E.
,
Friedrich
,
G.
, and
Gugatschka
,
M.
,
2011
, “
Biomechanics of the Cricoarytenoid Joint: Three-Dimensional Imaging and Vector Analysis
,”
J. Voice
,
25
(4)
, pp.
406
410
.10.1016/j.jvoice.2010.03.005
16.
Wang
,
R. C.
,
1998
, “
Three-Dimensional Analysis of Cricoarytenoid Joint Motion
,”
Laryngoscope
,
108
, pp.
1
17
.10.1097/00005537-199804001-00001
17.
Farley
,
G. R.
,
1996
, “
A Biomechanical Laryngeal Model of Voice F0 and Glottal Width Control
,”
J. Acoust. Soc. Am.
,
100
(6)
, pp.
3794
3812
.10.1121/1.417218
18.
Gommel
,
A.
,
Butenweg
,
C.
,
Bolender
,
K.
, and
Grunendahl
,
A.
,
2007
., “
A Muscle Controlled Finite-Element Model of Laryngeal Abduction and Adduction
,”
Comput. Method Biomec. Biomed. Eng.
,
10
(5)
, pp.
377
388
.10.1080/10255840701550923
19.
Hunter
,
E. J.
,
Titze
,
I. R.
, and
Alipour
,
F.
,
2004
, “
A Three-Dimensional Model of Vocal Fold Abduction/Adduction
,”
J. Acoust. Soc. Am.
,
115
(4)
, pp.
1747
1759
.10.1121/1.1652033
20.
Titze
,
I. R.
, and
Hunter
,
E. J.
,
2007
, “
A Two-Dimensional Biomechanical Model of Vocal Fold Posturing
,”
J. Acoust. Soc. Am.
,
121
(4)
, pp.
2254
2260
.10.1121/1.2697573
21.
Hunter
,
E. J.
, and
Thomson
,
S. L.
,
2012
, “Solid CAD Models of Human Laryngeal Cartilage,” Created From Selbie et al., National Repository for Laryngeal Data, Technical Note, No. 6, April 2002, Version 1.0.
22.
Ishizaka
,
K.
,
1981
, “
Equivalent Lumped-Mass Models of Vocal Fold Vibration
,”
Vocal Fold Physiology
,
K. N.
Stevens
and
M.
Hirano
, eds.,
University of Tokyo
,
Tokyo, Japan
, pp.
231
244
.
23.
Zhang
,
Z
.,
2009
, “
Characteristics of Phonation Onset in a Two-Layer Vocal Fold Model
,”
J. Acoust. Soc. Am.
,
125
(2)
, pp.
1091
1102
.10.1121/1.3050285
24.
Zhang
,
Z.
,
2014
, “
The Influence of Material Anisotropy on Vibration at Onset in a Three-Dimensional Vocal Fold Model
,”
J. Acoust. Soc. Am.
,
135
(3)
, pp.
1480
1490
.10.1121/1.4863266
25.
Zhang
,
Z.
,
Neubauer
,
J.
, and
Berry
,
D. A.
,
2007
, “
Physical Mechanisms of Phonation Onset: A Linear Stability Analysis of an Aeroelastic Continuum Model of Phonation
,”
J. Acoust. Soc. Am.
,
122
(4)
, pp.
2279
2295
.10.1121/1.2773949
26.
Becker
,
S.
,
Kniesburges
,
S.
,
Muller
,
S.
,
Delgado
,
A.
,
Link
,
G.
,
Kaltenbacher
,
M.
, and
Dollinger
,
M.
,
2009
, “
Flow-Structure-Acoustic Interaction in a Human Voice Model
,”
J. Acoust. Soc. Am.
,
125
(3)
, pp.
1351
1361
.10.1121/1.3068444
27.
Bhattacharya
,
P.
, and
Siegmund
,
T.
,
2013
, “
A Computational Study of Systematic Hydration in Vocal Fold Collision
,”
Comput. Methods Biomech. Biomed. Eng.
,
17
(
16
), pp.
1835
1852
.10.1080/10255842.2013.772591
28.
Mendelsohn
,
A. H.
, and
Zhang
,
Z.
,
2011
, “
Phonation Threshold Pressure and Onset Frequency in a Two-Layer Physical Model of the Vocal Folds
,”
J. Acoust. Soc. Am.
,
130
(5)
, pp.
2961
2968
.10.1121/1.3644913
29.
Pickup
,
B. A.
, and
Thomson
,
S. L.
2009
, “
Influence of Asymmetric Stiffness on the Structural and Aerodynamic Response of Synthetic Vocal Fold Models
,”
J. Biomech.
,
42
(14)
, pp.
2219
2225
.10.1016/j.jbiomech.2009.06.039
30.
Scherer
,
R.
,
Shinwari
,
D.
,
De Witt
,
K.
,
Zhang
,
C.
,
Kucinschi
,
B.
, and
Afjeh
,
A.
,
2001
, “
Intraglottal Pressure Profiles for a Symmetric and Oblique Glottis With a Divergence Angle of 10 Degrees
,”
J. Acoust. Soc. Am.
,
109
(4)
, pp.
1616
1630
.10.1121/1.1333420
31.
Zheng
,
X.
,
Bielamowicz
,
S.
,
Luo
,
H.
, and
Mittal
,
R.
,
2009
, “
A Computational Study of the Effect of False Vocal Folds on Glottal Flow and Vocal Fold Vibration During Phonation
,”
Ann. Biomech. Eng.
,
37
(3)
, pp.
625
642
.10.1007/s10439-008-9630-9
32.
Eckel
,
H. E.
, and
Sittel
,
C.
,
1995
, “
Morphometry of the Larynx in Horizontal Sections
,”
Am. J. Otol.
,
16
(1)
, pp.
40
48
.10.1016/0196-0709(95)90008-X
33.
Mineck
,
C. W.
,
Niro
,
T.
,
Chan
,
R.
, and
Titze
,
I. R.
,
2000
, “
Three-Dimensional Anatomic Characterization of the Canine Laryngeal Abduction and Adduction Musculature
,”
Ann. Otol., Rhinol., Laryngol.
,
109
, pp.
505
513
.
34.
Bol
,
M.
, and
Reese
,
S.
,
2008
, “
Micromechanical Modeling of Skeletal Muscles Based on the Finite Element Method
,”
Comput. Methods Biomech. Biomed. Eng.
,
11
(5)
, pp.
489
504
.10.1080/10255840701771750
35.
Grasa
,
J.
,
Ramirez
,
A.
,
Osta
,
R.
,
Munoz
,
M.
,
Soteras
,
F.
, and
Calvo
,
B.
,
2011
, “
A 3D Active-Passive Numerical Skeletal Muscle Model Incorporating Initial Tissue Strains. Validation With Experimental Results on Rat Tibialis Anterior Muscle.
,”
Biomech. Model. Mechanobiol.
,
10
(5)
, pp.
779
787
.10.1007/s10237-010-0273-z
36.
Yin
,
J.
, and
Zhang
,
Z.
,
2013
, “
The Influence of Thyroarytenoid and Cricothyroid Muscle Activation on Vocal Fold Stiffness and Eigenfrequencies
,”
J. Acoust. Soc. Am.
,
133
(5)
, pp.
2972
2983
.10.1121/1.4799809
37.
Holzapfel
,
G. A.
,
Gasser
,
T. C.
, and
Ogden
,
R. W.
,
2000
, “
A New Constitutive Framework for Arterial Wall Mechanics and a Comparative Study of Material Models
,”
J. Elasticity
,
61
(1–3)
, pp.
1
48
.10.1023/A:1010835316564
38.
Zhang
,
K.
,
Siegmund
,
T.
, and
Chan
,
R. W.
,
2007
, “
A Two-Layer Composite Model of the Vocal Fold Lamina Propria for Fundamental Frequency Regulation
,”
J. Acoust. Soc. Am.
,
122
(2)
, pp.
1090
1101
.10.1121/1.2749460
39.
Blemker
,
S. S.
,
Pinsky
,
P. M.
, and
Delp
,
S. L.
2005
, “
A 3D Model of Muscle Reveals the Causes of Nonuniform Strains in the Biceps Brachii
,”
J. Biomech.
,
38
(4)
, pp.
657
665
.10.1016/j.jbiomech.2004.04.009
40.
Alipour-Haghighi
,
F.
,
Titze
,
I. R.
, and
Perlman
,
A. L.
,
1989
, “
Tetanic Contraction in Vocal Fold Muscle
,”
J. Speech Hear Res.
,
32
, pp.
226
231
.10.1044/jshr.3202.226
41.
Berke
,
G.
,
Mendelsohn
,
A.
,
Howard
,
N.
, and
Zhang
,
Z.
,
2013
, “
Neuromuscular Induced Phonation in a Human Ex Vivo Perfused Larynx Preparation
,”
J. Acoust. Soc. Am.
,
133
(2)
, Paper No. EL114-EL117.10.1121/1.4776776
42.
Deguchi
,
S.
,
Kawahara
,
Y.
, and
Takahashi
,
S.
,
2011
, “
Cooperative Regulation of Vocal Fold Morphology and Stress by the Cricothyroid and Thyroarytenoid Muscles
,”
J. Voice
,
25
(6)
, pp.
e255
e263
.10.1016/j.jvoice.2010.11.006
43.
Chhetri
,
D.
,
Berke
,
G.
,
Lotfizadeh
,
A.
,
Goodyer
,
E.
,
2009
, “
Control of Vocal Fold Cover Stiffness by Laryngeal Muscles: A Preliminary Study
,”
Laryngoscope
,
119
(1)
, pp.
222
227
.10.1002/lary.20031
44.
Probst
,
K. X.
,
Ybarra
,
M. A. S.
,
Kashima
,
H.
, and
Crosby
,
R. W.
,
2004
, “
Topography and Interactions of the Arytenoid and Cricoid Articular Facets: Implications for Vocal Process Positional Shifts
,”
Clin. Anat.
,
17
(3)
, pp.
206
213
.10.1002/ca.10201
You do not currently have access to this content.