The complex geometry of cancellous bone tissue makes it difficult to generate finite element (FE) models. Only a few studies investigated the convergence behavior at the tissue scale using Cartesian meshes. However, these studies were not conducted according to an ideal patch test and the postelastic convergence behavior was not reported. In this study, the third principal strain and stress, and the displacement obtained from human micro finite element (microFE) models of lower resolutions were compared against the model of 19.5 μm as a reference, representing the original spatial resolution of microCT data. Uni-axial compression simulations using both linear-elastic and nonlinear constitutive equations were performed. The results showed a decrease in percentage difference in all three values as the element size decreased, with the displacement converging the fastest among the three. Simulations carried out using a nonlinear constitutive equation however, failed to show convergence for the third principal strains and stresses. It was concluded that at the tissue level, Cartesian meshes of human cancellous bone tissue were able to reach a converged solution in all three parameters investigated for linear simulation and only in displacement for nonlinear simulation. These parameters can be used as references in the future for studies in local biomechanical behavior of human cancellous bone tissues with linear simulation. The convergence behavior for human cancellous bone tissue using nonlinear constitutive equations needs further investigation.

References

References
1.
Viceconti
,
M.
,
2012
,
Multiscale Modeling of the Skeletal System
,
Cambridge University
,
Cambridge University Press
, Cambridge, UK.
2.
Vaughan
,
T. J.
,
McCarthy
,
C. T.
, and
McNamara
,
L. M.
,
2012
, “
A Three-Scale Finite Element Investigation into the Effects of Tissue Mineralisation and Lamellar Organisation in Human Cortical and Trabecular Bone
,”
J. Mech. Behav. Biomed. Mater.
,
12
, pp.
50
62
.10.1016/j.jmbbm.2012.03.003
3.
Huiskes
,
R.
, and
Hollister
,
S. J.
,
1993
, “
From Structure to Process, From Organ to Cell: Recent Developments of FE-Analysis in Orthopaedic Biomechanics
,”
ASME J. Biomech. Eng.
,
115
(
4B
), pp.
520
527
.10.1115/1.2895534
4.
Guldberg
,
R. E.
,
Hollister
,
S. J.
, and
Charras
,
G. T.
,
1998
, “
The Accuracy of Digital Image-Based Finite Element Models
,”
ASME J. Biomech. Eng.
,
120
(
2
), pp.
289
295
.10.1115/1.2798314
5.
Wang
,
Z. J.
,
1998
, “
A Quadtree-Based Adaptive Cartesian/Quad Grid Flow Solver for Navier–Stokes Equations
,”
Comput. Fluids
,
27
(
4
), pp.
529
549
.10.1016/S0045-7930(97)00070-4
6.
Feldkamp
,
L. A.
,
Goldstein
,
S. A.
,
Parfitt
,
A. M.
,
Jesion
,
G.
, and
Kleerekoper
,
M.
,
1989
, “
The Direct Examination of Three-Dimensional Bone Architecture In Vitro by Computed Tomography
,”
J. Bone Miner. Res.
,
4
(
1
), pp.
3
11
.10.1002/jbmr.5650040103
7.
van Rietbergen
,
B.
,
Weinans
,
H.
,
Huiskes
,
R.
, and
Odgaard
,
A.
,
1995
, “
A New Method to Determine Trabecular Bone Elastic Properties and Loading Using Micromechanical Finite-Element Models
,”
J. Biomech.
,
28
(
1
), pp.
69
81
.10.1016/0021-9290(95)80008-5
8.
Keyak
,
J. H.
,
Meagher
,
J. M.
,
Skinner
,
H. B.
, and
Mote
,
C. D.
, Jr.
,
1990
, “
Automated Three-Dimensional Finite Element Modelling of Bone: A New Method
,”
ASME J. Biomed. Eng.
,
12
(
5
), pp.
389
397
.10.1016/0141-5425(90)90022-F
9.
Hollister
,
S. J.
,
Brennan
,
J. M.
, and
Kikuchi
,
N.
,
1994
, “
A Homogenization Sampling Procedure for Calculating Trabecular Bone Effective Stiffness and Tissue Level Stress
,”
J. Biomech.
,
27
(
4
), pp.
433
444
.10.1016/0021-9290(94)90019-1
10.
van Rietbergen
,
B.
,
2001
, “
Micro-FE Analyses of Bone: State of the Art
,”
Adv. Exp. Med. Biol.
,
496
, pp.
21
30
.10.1007/978-1-4615-0651-5
11.
Depalle
,
B.
,
Chapurlat
,
R.
,
Walter-Le-Berre
,
H.
,
Bou-Said
,
B.
, and
Follet
,
H.
,
2012
, “
Finite Element Dependence of Stress Evaluation for Human Trabecular Bone
,”
J. Mech. Behav. Biomed. Mater.
,
18
, pp.
200
212
.10.1016/j.jmbbm.2012.08.012
12.
Duboeuf
,
F.
,
Szulc
,
P.
,
Schott
,
A. M.
,
Meunier
,
P.
, and
Delmas
,
P. D.
,
2003
, “
Parameters of Hip Geometry and Bone Mineral Density Measured by Dual Energy X-Ray Absorptiometry as Predictors of Hip Fracture Risk in Elderly Women From EPIDOS Cohort
,”
J. Bone Miner. Res.
,
18
, p.
S64
.
13.
Vilayphiou
,
N.
,
Boutroy
,
S.
,
Szulc
,
P.
,
van Rietbergen
,
B.
,
Munoz
,
F.
,
Delmas
,
P. D.
, and
Chapurlat
,
R.
,
2011
, “
Finite Element Analysis Performed on Radius and Tibia HR-pQCT Images and Fragility Fractures at All Sites in Men
,”
J. Bone Miner. Res.
,
26
(
5
), pp.
965
973
.10.1002/jbmr.297
14.
Christen
,
D.
,
Webster
,
D. J.
, and
Muller
,
R.
,
2010
, “
Multiscale Modelling and Nonlinear Finite Element Analysis as Clinical Tools for the Assessment of Fracture Risk
,”
Philos. Trans. R. Soc. A
,
368
(
1920
), pp.
2653
2668
.10.1098/rsta.2010.0041
15.
Ulrich
,
D.
,
van Rietbergen
,
B.
,
Weinans
,
H.
, and
Ruegsegger
,
P.
,
1998
, “
Finite Element Analysis of Trabecular Bone Structure: A Comparison of Image-Based Meshing Techniques
,”
J. Biomech.
,
31
(
12
), pp.
1187
1192
.10.1016/S0021-9290(98)00118-3
16.
Torcasio
,
A.
,
Zhang
,
X.
,
Duyck
,
J.
, and
van Lenthe
,
G. H.
,
2012
, “
3D Characterization of Bone Strains in the Rat Tibia Loading Model
,”
Biomech. Model. Mechanobiol.
,
11
(
3–4
), pp.
403
410
.10.1007/s10237-011-0320-4
17.
Ladd
,
A. J.
, and
Kinney
,
J. H.
,
1998
, “
Numerical Errors and Uncertainties in Finite-Element Modeling of Trabecular Bone
,”
J. Biomech.
,
31
(
10
), pp.
941
945
.10.1016/S0021-9290(98)00108-0
18.
van Rietbergen
,
B.
,
Majumdar
,
S.
,
Pistoia
,
W.
,
Newitt
,
D. C.
,
Kothari
,
M.
,
Laib
,
A.
, and
Ruegsegger
,
P.
,
1998
, “
Assessment of Cancellous Bone Mechanical Properties From Micro-FE Models Based on Micro-CT, pQCT, and MR Images
,”
Technol. Health Care
,
6
(
5–6
), pp.
413
420
.
19.
Niebur
,
G. L.
,
Feldstein
,
M. J.
,
Yuen
,
J. C.
,
Chen
,
T. J.
, and
Keaveny
,
T. M.
,
2000
, “
High-Resolution Finite Element Models With Tissue Strength Asymmetry Accurately Predict Failure of Trabecular Bone
,”
J. Biomech.
,
33
(
12
), pp.
1575
1583
.10.1016/S0021-9290(00)00149-4
20.
MacNeil
,
J. A.
, and
Boyd
,
S. K.
,
2008
, “
Bone Strength at the Distal Radius Can Be Estimated From High-Resolution Peripheral Quantitative Computed Tomography and the Finite Element Method
,”
Bone
,
42
(
6
), pp.
1203
1213
.10.1016/j.bone.2008.01.017
21.
Bathe
,
K.-J. R.
,
1996
,
Finite Element Procedures
,
Prentice Hall
,
Englewood Cliffs, NJ
.
22.
Fagan
,
M. J.
,
1992
,
Finite Element Analysis: Theory and Practice
,
Longman Scientific & Technical, Wiley
,
Harlow, Essex, England
.
23.
Yeni
,
Y. N.
,
Christopherson
,
G. T.
,
Dong
,
X. N.
,
Kim
,
D. G.
, and
Fyhrie
,
D. P.
,
2005
, “
Effect of Microcomputed Tomography Voxel Size on the Finite Element Model Accuracy for Human Cancellous Bone
,”
ASME J. Biomech. Eng.
,
127
(
1
), pp.
1
8
.10.1115/1.1835346
24.
Niebur
,
G. L.
,
Yuen
,
J. C.
,
Hsia
,
A. C.
, and
Keaveny
,
T. M.
,
1999
, “
Convergence Behavior of High-Resolution Finite Element Models of Trabecular Bone
,”
ASME J. Biomech. Eng.
,
121
(
6
), pp.
629
635
.10.1115/1.2800865
25.
Cowin
,
S. C.
,
2001
,
Bone Mechanics Handbook
,
CRC
,
Boca Raton, FL
.
26.
Perilli
, E
,
Baleani
, M.
,
Ohman
, C.
,
Baruffaldi
, F.
, and
Viceconti
, M.
,
2007
, “Structural Parameters and Mechanical Strength of Cancellous Bone in the Femoral Head in Osteoarthritis Do Not Depend on Age,”
Bone
,
41
(
5
), pp.
760
776
.10.1016/j.bone.2007.07.014
27.
Perilli
,
E.
,
Baruffaldi
,
F.
,
Visentin
,
M.
,
Bordini
,
B.
,
Traina
,
F.
,
Cappello
,
A.
, and
Viceconti
,
M.
,
2007
, “
MicroCT Examination of Human Bone Specimens: Effects of Polymethylmethacrylate Embedding on Structural Parameters
,”
J. Microsc.
,
225
(
2
), pp.
192
200
.10.1111/j.1365-2818.2007.01731.x
28.
Ebrahimi
,
H.
,
Rabinovich
,
M.
,
Vuleta
,
V.
,
Zalcman
,
D.
,
Shah
,
S.
,
Dubov
,
A.
,
Roy
,
K.
,
Siddiqui
,
F. S.
,
Schemitsch
,
H. E.
,
Bougherara
,
H.
, and
Zdero
,
R.
,
2012
, “
Biomechanical Properties of an Intact, Injured, Repaired, and Healed Femur: An Experimental and Computational Study
,”
J. Mech. Behav. Biomed. Mater.
,
16
, pp.
121
135
.10.1016/j.jmbbm.2012.09.005
29.
Morgan
,
E. F.
,
Bayraktar
,
H. H.
, and
Keaveny
,
T. M.
,
2003
, “
Trabecular Bone Modulus-Density Relationships Depend on Anatomic Site
,”
J. Biomech.
,
36
(
7
), pp.
897
904
.10.1016/S0021-9290(03)00071-X
30.
Bayraktar
,
H. H.
,
Morgan
,
E. F.
,
Niebur
,
G. L.
,
Morris
,
G. E.
,
Wong
,
E. K.
, and
Keaveny
,
T. M.
,
2004
, “
Comparison of the Elastic and Yield Properties of Human Femoral Trabecular and Cortical Bone Tissue
,”
J. Biomech.
,
37
(
1
), pp.
27
35
.10.1016/S0021-9290(03)00257-4
31.
Kabel
,
J.
,
van Rietbergen
,
B.
,
Dalstra
,
M.
,
Odgaard
,
A.
, and
Huiskes
,
R.
,
1999
, “
The Role of an Effective Isotropic tissue Modulus in the Elastic Properties of Cancellous Bone
,”
J. Biomech.
,
32
(
7
), pp.
673
680
.10.1016/S0021-9290(99)00045-7
32.
van Ruijven
,
L. J.
,
Giesen
,
E. B.
,
Farella
,
M.
, and
van Eijden
,
T. M.
,
2003
, “
Prediction of Mechanical Properties of the Cancellous Bone of the Mandibular Condyle
,”
J. Dent. Res.
,
82
(
10
), pp.
819
823
.10.1177/154405910308201011
33.
Renders
,
G. A.
,
Mulder
,
L.
,
van Ruijven
,
L. J.
,
Langenbach
,
G. E.
, and
van Eijden
,
T. M.
,
2011
, “
Mineral Heterogeneity Affects Predictions of Intratrabecular Stress and Strain
,”
J. Biomech.
,
44
(
3
), pp.
402
407
.10.1016/j.jbiomech.2010.10.004
34.
Schileo
,
E.
,
Taddei
,
F.
,
Cristofolini
,
L.
, and
Viceconti
,
M.
,
2008
, “
Subject-Specific Finite Element Models Implementing a Maximum Principal Strain Criterion Are Able to Estimate Failure Risk and Fracture Location on Human Femurs Tested In Vitro
,”
J. Biomech.
,
41
(
2
), pp.
356
367
.10.1016/j.jbiomech.2007.09.009
35.
Berdichevsky
,
V.
, and
Foster
,
D. J.
,
2003
, “
On Saint-Venant's Principle in the Dynamics of Elastic Beams
,”
Int. J. Solids Struct.
,
40
(
13–14
), pp.
3293
3310
.10.1016/S0020-7683(03)00158-6
36.
Wang
,
M.
,
2001
, “
On the Necessity and Sufficiency of the Patch Test for Convergence of Nonconforming Finite Elements
,”
SIAM J. Numer. Anal.
,
39
(
2
), pp.
363
384
.10.1137/S003614299936473X
37.
Pointer
,
J.
,
2004
, “
Understanding Accuracy and Discretization Error in an FEA Model
,”
ANSYS 7.1, 2004 Conference
, Wooward Governor Company.
38.
Razavi
,
H.
,
Abolmaali
,
A.
, and
Ghassemieh
,
M.
,
2007
, “
Invisible Elastic Bolt Model Concept for Finite Element Analysis of Bolted Connections
,”
J. Constr. Steel Res.
,
63
(
5
), pp.
647
657
.10.1016/j.jcsr.2006.07.003
39.
Gu
,
Q.
, and
Conte
,
J. P.
,
2003
, “
Convergence Studies in Nonlinear Finite Element Response Sensitivity Analysis
,”
Appl. Stat. Probab. Civil Eng.
,
1–2
, pp.
297
304
.
40.
Nazarian
,
A.
,
von Stechow
,
D.
,
Zurakowski
,
D.
,
Muller
,
R.
, and
Snyder
,
B. D.
,
2008
, “
Bone Volume Fraction Explains the Variation in Strength and Stiffness of Cancellous Bone Affected by Metastatic Cancer and Osteoporosis
,”
Calcif. Tissue Int.
,
83
(
6
), pp.
368
379
.10.1007/s00223-008-9174-x
41.
van Ruijven
,
L. J.
,
Mulder
,
L.
, and
van Eijden
,
T. M.
,
2007
, “
Variations in Mineralization Affect the Stress and Strain Distributions in Cortical and Trabecular Bone
,”
J. Biomech.
,
40
(
6
), pp.
1211
1218
.10.1016/j.jbiomech.2006.06.004
You do not currently have access to this content.