Mouse models are an important way for exploring relationships between blood hemodynamics and eventual plaque formation. We have developed a mouse model of aortic regurgitation (AR) that produces large changes in plaque burden with charges in hemodynamics [Zhou et al., 2010, "Aortic Regurgitation Dramatically Alters the Distribution of Atherosclerotic Lesions and Enhances Atherogenesis in Mice," Arterioscler. Thromb. Vasc. Biol., 30(6), pp. 1181–1188]. In this paper, we explore the amount of detail needed for realistic computational fluid dynamics (CFD) calculations in this experimental model. The CFD calculations use inputs based on experimental measurements from ultrasound (US), micro computed tomography (CT), and both anatomical magnetic resonance imaging (MRI) and phase contrast MRI (PC-MRI). The adequacy of five different levels of model complexity (a) subject-specific CT data from a single mouse; (b) subject-specific CT centerlines with radii from US; (c) same as (b) but with MRI derived centerlines; (d) average CT centerlines and averaged vessel radius and branching vessels; and (e) same as (d) but with averaged MRI centerlines) is evaluated by demonstrating their impact on relative residence time (RRT) outputs. The paper concludes by demonstrating the necessity of subject-specific geometry and recommends for inputs the use of CT or anatomical MRI for establishing the aortic centerlines, M-mode US for scaling the aortic diameters, and a combination of PC-MRI and Doppler US for estimating the spatial and temporal characteristics of the input wave forms.

References

1.
Zhou
,
Y. Q.
,
Zhu
,
S. N.
,
Foster
,
F. S.
,
Cybulsky
,
M. I.
, and
Henkelman
,
R. M.
,
2010
, “
Aortic Regurgitation Dramatically Alters the Distribution of Atherosclerotic Lesions and Enhances Atherogenesis in Mice
,”
Arterioscler. Thromb. Vasc. Biol.
,
30
(
6
), pp.
1181
1188
.10.1161/ATVBAHA.110.204198
2.
Hoi
,
Y.
,
Zhou
,
Y. Q.
,
Zhang
,
X.
,
Henkelman
,
R. M.
, and
Steinman
,
D. A.
,
2011
, “
Correlation Between Local Hemodynamics and Lesion Distribution in a Novel Aortic Regurgitation Murine Model of Atherosclerosis
,”
Ann. Biomed. Eng.
,
39
(
5
), pp.
1414
1422
.10.1007/s10439-011-0255-z
3.
Sharpe
,
J.
,
Ahlgren
,
U.
,
Perry
,
P.
,
Hill
,
B.
,
Ross
,
A.
,
Hecksher-Sorensen
,
J.
,
Baldock
,
R.
, and
Davidson
,
D.
,
2002
, “
Optical Projection Tomography as a Tool for 3D Microscopy and Gene Expression Studies
,”
Science
,
296
(
5567
), pp.
541
545
.10.1126/science.1068206
4.
Wong
,
M. D.
,
Dazai
,
J.
,
Walls
,
J. R.
,
Gale
,
N. W.
, and
Henkelman
,
R. M.
,
2013
, “
Design and Implementation of a Custom Built Optical Projection Tomography System
,”
PLoS One
,
8
(
9
), p.
e73491
.10.1371/journal.pone.0073491
5.
Van Doormaal
,
M. A.
,
Kazakidi
,
A.
,
Wylezinska
,
M.
,
Hunt
,
A.
,
Tremoleda
,
J. L.
,
Protti
,
A.
,
Bohraus
,
Y.
,
Gsell
,
W.
,
Weinberg
,
P. D.
, and
Ethier
,
C. R.
,
2012
, “
Haemodynamics in the Mouse Aortic Arch Computed From MRI-Derived Velocities at the Aortic Root
,”
J. R. Soc. Interface
,
9
(
76
), pp.
2834
2844
.10.1098/rsif.2012.0295
6.
Feintuch
,
A.
,
Ruengsakulrach
,
P.
,
Lin
,
A.
,
Zhang
,
J.
,
Zhou
,
Y. Q.
,
Bishop
,
J.
,
Davidson
,
L.
,
Courtman
,
D.
,
Foster
,
F. S.
,
Steinman
,
D. A.
,
Henkelman
,
R. M.
, and
Ethier
,
C. R.
,
2007
, “
Hemodynamics in the Mouse Aortic Arch as Assessed by MRI, Ultrasound, and Numerical Modeling
,”
Am. J. Physiol. Heart Circ. Physiol.
,
292
(
2
), pp.
H884
892
.10.1152/ajpheart.00796.2006
7.
Suo
,
J.
,
Ferrara
,
D. E.
,
Sorescu
,
D.
,
Guldberg
,
R. E.
,
Taylor
,
W. R.
, and
Giddens
,
D. P.
,
2007
, “
Hemodynamic Shear Stresses in Mouse Aortas: Implications for Atherogenesis
,”
Arterioscler. Thromb. Vasc. Biol.
,
27
(
2
), pp.
346
351
.10.1161/01.ATV.0000253492.45717.46
8.
Vandeghinste
,
B.
,
2011
, “
Replacing Vascular Corrosion Casting by in Vivo Micro-CT Imaging for Building 3D Cardiovascular Models in Mice
,”
Mol. Imaging Biol.
,
13
(
1
), pp.
78
86
.10.1007/s11307-010-0335-8
9.
Greve
,
J. M.
,
Les
,
A. S.
,
Tang
,
B. T.
,
Draney Blomme
,
M. T.
,
Wilson
,
N. M.
,
Dalman
,
R. L.
,
Pelc
,
N. J.
, and
Taylor
,
C. A.
,
2006
, “
Allometric Scaling of Wall Shear Stress From Mice to Humans: Quantification Using Cine Phase-Contrast MRI and Computational Fluid Dynamics
,”
Am. J. Physiol. Heart Circ. Physiol.
,
291
(
4
), pp.
H1700
1708
.10.1152/ajpheart.00274.2006
10.
Feintuch
,
A.
,
Zhu
,
Y.
,
Bishop
,
J.
,
Davidson
,
L.
,
Dazai
,
J.
,
Bruneau
,
B. G.
, and
Henkelman
,
R. M.
,
2007
, “
4D Cardiac MRI in the Mouse
,”
NMR Biomed.
,
20
(
3
), pp.
360
365
.10.1002/nbm.1164
11.
Zhou
,
Y. Q.
,
Davidson
,
L.
,
Henkelman
,
R. M.
,
Nieman
,
B. J.
,
Foster
,
F. S.
,
Yu
,
L. X.
, and
Chen
,
X. J.
,
2004
, “
Ultrasound-Guided Left-Ventricular Catheterization: A Novel Method of Whole Mouse Perfusion for Microimaging
,”
Lab. Invest.
,
84
(
3
), pp.
385
389
.10.1038/labinvest.3700038
12.
Hoi
,
Y.
,
Van Doormaal
,
M.
,
Zhou
,
Y.-Q.
,
Zhang
,
X.
,
Henkelman
,
R. M.
, and
Steinman
,
D. A.
,
2011
, “
Degree of Retrograde Flow and Its Effects on Local Hemodynamics and Plaque Distribution in an Aortic Regurgitation Mouse Model of Atherosclerosis
,”
ASME
Paper No. SBC2011-53161.10.1115/SBC2011-53161
13.
Trachet
,
B.
,
Bols
,
J.
,
De Santis
,
G.
,
Vandenberghe
,
S.
,
Loeys
,
B.
, and
Segers
,
P.
,
2011
, “
The Impact of Simplified Boundary Conditions and Aortic Arch Inclusion on CFD Simulations in the Mouse Aorta: A Comparison With Mouse-Specific Reference Data
,”
ASME J. Biomech. Eng.
,
133
(
12
), p.
121006
.10.1115/1.4005479
14.
Minev
,
P. D.
,
1998
, “
A Characteristic/Finite Element Algorithm for the 3-D Navier–Stokes Equations Using Unstructured Grids
,”
Comput. Methods Appl. Mech. Eng.
,
178
(
1
), pp.
39
50
.10.1016/S0045-7825(99)00003-1
15.
Lee
,
S. W.
,
Antiga
,
L.
, and
Steinman
,
D. A.
,
2009
, “
Correlations Among Indicators of Disturbed Flow at the Normal Carotid Bifurcation
,”
ASME J. Biomech. Eng.
,
131
(
6
), p.
061013
.10.1115/1.3127252
16.
Himburg
,
H. A.
,
Grzybowski
,
D. M.
,
Hazel
,
A. L.
,
LaMack
,
J. A.
,
Li
,
X. M.
, and
Friedman
,
M. H.
,
2004
, “
Spatial Comparison Between Wall Shear Stress Measures and Porcine Arterial Endothelial Permeability
,”
Am. J. Physiol. Heart Circ. Physiol.
,
286
(
5
), pp.
H1916
1922
.10.1152/ajpheart.00897.2003
17.
Dean
,
W. R.
,
1927
, “
Note on the Motion of Fluid in a Curved Pipe
,”
Philos. Mag.
,
4
(
20
), pp.
208
223
.10.1080/14786440708564324
18.
Moore
,
J. A.
,
Rutt
,
B. K.
,
Karlik
,
S. J.
,
Yin
,
K.
, and
Ethier
,
C. R.
,
1999
, “
Computational Blood Flow Modeling Based on In Vivo Measurements
,”
Ann. Biomed. Eng.
,
27
(
5
), pp.
627
640
.10.1114/1.221
You do not currently have access to this content.