Although mechanical ventilation is a life-saving therapy for patients with severe lung disorders, the microbubble flows generated during ventilation generate hydrodynamic stresses, including pressure and shear stress gradients, which damage the pulmonary epithelium. In this study, we used computational fluid dynamics to investigate how gravity, inertia, and surface tension influence both microbubble flow patterns in bifurcating airways and the magnitude/distribution of hydrodynamic stresses on the airway wall. Direct interface tracking and finite element techniques were used to simulate bubble propagation in a two-dimensional (2D) liquid-filled bifurcating airway. Computational solutions of the full incompressible Navier–Stokes equation were used to investigate how inertia, gravity, and surface tension forces as characterized by the Reynolds (Re), Bond (Bo), and Capillary (Ca) numbers influence pressure and shear stress gradients at the airway wall. Gravity had a significant impact on flow patterns and hydrodynamic stress magnitudes where Bo > 1 led to dramatic changes in bubble shape and increased pressure and shear stress gradients in the upper daughter airway. Interestingly, increased pressure gradients near the bifurcation point (i.e., carina) were only elevated during asymmetric bubble splitting. Although changes in pressure gradient magnitudes were generally more sensitive to Ca, under large Re conditions, both Re and Ca significantly altered the pressure gradient magnitude. We conclude that inertia, gravity, and surface tension can all have a significant impact on microbubble flow patterns and hydrodynamic stresses in bifurcating airways.

References

References
1.
Ware
,
L. B.
, and
Matthay
,
M. A.
,
2000
, “
Medical Progress—The Acute Respiratory Distress Syndrome
,”
N. Eng. J. Med.
,
342
(
18
), pp.
1334
1349
.10.1056/NEJM200005043421806
2.
Ghadiali
,
S.
, and
Huang
,
Y.
,
2011
, “
Role of Airway Recruitment and Derecruitment in Lung Injury
,”
Crit. Rev. Biomed. Eng.
,
39
(
4
), pp.
297
317
.10.1615/CritRevBiomedEng.v39.i4.40
3.
Ghadiali
,
S. N.
, and
Gaver
,
D. P.
,
2008
, “
Biomechanics of Liquid–Epithelium Interactions in Pulmonary Airways
,”
Respir. Physiol. Neurobiol.
,
163
(
1–3
), pp.
232
243
.10.1016/j.resp.2008.04.008
4.
Rubenfeld
,
G. D.
, and
Herridge
,
M. S.
,
2007
, “
Epidemiology and Outcomes of Acute Lung Injury
,”
Chest
,
131
(
2
), pp.
554
562
.10.1378/chest.06-1976
5.
D'angelo
,
E.
,
Koutsoukou
,
A.
,
Della Valle
,
P.
,
Gentile
,
G.
, and
Pecchiari
,
M.
,
2008
, “
Cytokine Release, Small Airway Injury, and Parenchymal Damage During Mechanical Ventilation in Normal Open-Chest Rats
,”
J. Appl. Physiol.
,
104
(
1
), pp.
41
49
.10.1152/japplphysiol.00805.2007
6.
Vlahakis
,
N. E.
, and
Hubmayr
,
R. D.
,
2005
, “
Cellular Stress Failure in Ventilator-Injured Lungs
,”
Am. J. Respir. Crit. Care Med.
,
171
(
12
), pp.
1328
1342
.10.1164/rccm.200408-1036SO
7.
Huang
,
Y.
,
Haas
,
C.
, and
Ghadiali
,
S. N.
,
2010
, “
Influence of Transmural Pressure and Cytoskeletal Structure on Nf-Kappa B Activation in Respiratory Epithelial Cells
,”
Cell. Mol. Bioeng.
,
3
(
4
), pp.
415
427
.10.1007/s12195-010-0138-7
8.
Bilek
,
A. M.
,
Dee
,
K. C.
, and
Gaver
,
D. P.
,
2003
, “
Mechanisms of Surface-Tension-Induced Epithelial Cell Damage in a Model of Pulmonary Airway Reopening
,”
J. Appl. Physiol.
,
94
(
2
), pp.
770
783
.10.1063/1.1582234
9.
Yalcin
,
H. C.
,
Perry
,
S. F.
, and
Ghadiali
,
S. N.
,
2007
, “
Influence of Airway Diameter and Cell Confluence on Epithelial Cell Injury in an in Vitro Model of Airway Reopening
,”
J. Appl. Physiol.
,
103
(
5
), pp.
1796
1807
.10.1152/japplphysiol.00164.2007
10.
Huang
,
Y.
,
Crawford
,
M.
,
Higuita-Castro
,
N.
,
Nana-Sinkam
,
P.
, and
Ghadiali
,
S. N.
,
2012
, “
Mir-146a Regulates Mechanotransduction and Pressure-Induced Inflammation in Small Airway Epithelium
,”
FASEB J.
,
26
(
8
), pp.
3351
3364
.10.1096/fj.11-199240
11.
U.S. House of Representatives,
2010
, “
House of Representatives Resolution #1122: Supporting the Goals and Ideals of the Year of the Lung 2010
,” Second Session of the 111th Congress.
12.
Bretherton
,
F. P.
,
1961
, “
The Motion of Long Bubbles in Tubes
,”
J. Fluid Mech.
,
10
(
2
), pp.
166
188
.10.1017/S0022112061000160
13.
Halpern
,
D.
, and
Gaver
,
D. P.
,
1994
, “
Boundary-Element Analysis of the Time-Dependent Motion of a Semi-Infinite Bubble In a Channel
,”
J. Comput. Phys.
,
115
(
2
), pp.
366
375
.10.1006/jcph.1994.1202
14.
Gaver
,
D. P.
,
Halpern
,
D.
,
Jensen
,
O. E.
, and
Grotberg
,
J. B.
,
1996
, “
The Steady Motion of a Semi-Infinite Bubble Through a Flexible-Walled Channel
,”
J. Fluid Mech.
,
319
, pp.
25
65
.10.1017/S0022112096007240
15.
Heil
,
M.
,
2000
, “
Finite Reynolds Number Effects in the Propagation of an Air Finger Into a Liquid-Filled Flexible-Walled Channel
,”
J. Fluid Mech.
,
424
, pp.
21
44
.10.1017/S0022112000002056
16.
Ghadiali
,
S. N.
, and
Gaver
,
D. P.
,
2003
, “
The Influence of Non-Equilibrium Surfactant Dynamics on the Flow of a Semi-Infinite Bubble in a Rigid Cylindrical Capillary Tube
,”
J. Fluid Mech.
,
478
, pp.
165
196
.10.1017/S002211200200335X
17.
Ghadiali
,
S. N.
,
Halpern
,
D.
, and
Gaver
,
D. P.
,
2001
, “
A Dual-Reciprocity Boundary Element Method for Evaluating Bulk Convective Transport of Surfactant in Free-Surface Flows
,”
J. Comput. Phys.
,
171
(
2
), pp.
534
559
.10.1006/jcph.2001.6792
18.
Smith
,
B. J.
, and
Gaver
,
D. P.
,
2008
, “
The Pulsatile Propagation of a Finger of Air Within a Fluid-Occluded Cylindrical Tube
,”
J. Fluid Mech.
,
601
, pp.
1
23
.10.1017/S0022112008000360
19.
Kay
,
S. S.
,
Bilek
,
A. M.
,
Dee
,
K. C.
, and
Gaver
,
D. P.
,
2004
, “
Pressure Gradient, not Exposure Duration, Determines the Extent of Epithelial Cell Damage in a Model of Pulmonary Airway Reopening
,”
J. Appl. Physiol.
,
97
(
1
), pp.
269
276
.10.1152/japplphysiol.01288.2003
20.
Yalcin
,
H. C.
,
Hallow
,
K. M.
,
Wang
,
J.
,
Wei
,
M. T.
,
Ou-Yang
,
H. D.
, and
Ghadiali
,
S. N.
,
2009
, “
Influence of Cytoskeletal Structure and Mechanics on Epithelial Cell Injury During Cyclic Airway Reopening
,”
Am. J. Physiol. Lung Cell. Mol. Physiol.
,
297
(
5
), pp.
L881
891
.10.1152/ajplung.90562.2008
21.
Dailey
,
H. L.
,
Ricles
,
L. M.
,
Yalcin
,
H. C.
, and
Ghadiali
,
S. N.
,
2009
, “
Image-Based Finite Element Modeling of Alveolar Epithelial Cell Injury During Airway Reopening
,”
J. Appl. Physiol.
,
106
(
1
), pp.
221
232
.10.1152/japplphysiol.90688.2008
22.
Dailey
,
H. L.
, and
Ghadiali
,
S. N.
,
2010
, “
Influence of Power-Law Rheology on Cell Injury During Microbubble Flows
,”
Biomech. Model. Mechanobiol.
,
9
(
3
), pp.
263
279
.10.1007/s10237-009-0175-0
23.
Naire
,
S.
, and
Jensen
,
O. E.
,
2005
, “
Epithelial Cell Deformation During Surfactant-Mediated Airway Reopening: A Theoretical Model
,”
J. Appl. Physiol.
,
99
(
2
), pp.
458
471
.10.1152/japplphysiol.00796.2004
24.
Calderon
,
A. J.
,
Heo
,
Y. S.
,
Huh
,
D.
,
Futai
,
N.
,
Takayama
,
S.
,
Fowlkes
,
J. B.
, and
Bull
,
J. L.
,
2006
, “
Microfluidic Model of Bubble Lodging in Microvessel Bifurcations
,”
Appl. Phys. Lett.
,
89
(
24
), p.
244103
10.1063/1.2402898
25.
Calderon
,
A. J.
,
Fowlkes
,
J. B.
, and
Bull
,
J. L.
,
2005
, “
Bubble Splitting in Bifurcating Tubes: A Model Study of Cardiovascular Gas Emboli Transport
,”
J. Appl. Physiol.
,
99
(
2
), pp.
479
487
.10.1152/japplphysiol.00656.2004
26.
Zheng
,
Y.
,
Fujioka
,
H.
,
Grotberg
,
J. C.
, and
Grotberg
,
J. B.
,
2006
, “
Effects of Inertia and Gravity on Liquid Plug Splitting at a Bifurcation
,”
ASME J. Biomech. Eng.
,
128
(
5
), pp.
707
716
.10.1115/1.2246235
27.
Baroud
,
C. N.
,
Tsikata
,
S.
, and
Heil
,
M.
,
2006
, “
The Propagation of Low-Viscosity Fingers Into Fluid-Filled Branching Networks
,”
J. Fluid Mech.
,
546
, pp.
285
294
.10.1017/S0022112005007287
28.
Wu
,
Y.
,
Fu
,
T.
, and
Zhu
,
C.
,
2012
, “
Asymmetrical Breakup of Bubbles at a Microfluidic T-Junction Divergence: Feedback Effect of Bubble Collision
,”
Microfluid. Nanofluid.
,
13
(
5
), pp.
285
294
.10.1007/s10404-012-0991-x
29.
Fu
,
T.
,
Ma
,
Y.
, and
Funfschilling
,
D.
,
2011
, “
Dynamics of Bubble Breakup in a Microfluidic T-Junction Divergence
,”
Chem. Eng. Sci.
,
66
(
18
), pp.
4184
4195
.10.1016/j.ces.2011.06.003
30.
Calderon
,
A. J.
,
Eshpuniyani
,
B.
,
Fowlkes
,
J. B.
, and
Bull
,
J. L.
,
2010
, “
A Boundary Element Model of the Transport of a Semi-Infinite Bubble Through a Microvessel Bifurcation
,”
Phys. Fluids
,
22
(
6
), p.
061902
.10.1063/1.3442829
31.
Cassidy
,
K. J.
,
Gavriely
,
N.
, and
Grotberg
,
J. B.
,
2001
, “
Liquid Plug Flow in Straight and Bifurcating Tubes
,”
ASME J. Biomech. Eng.
,
123
(
6
), pp.
580
589
.10.1115/1.1406949
32.
Walkley
,
M. A.
,
Gaskell
,
P. H.
,
Jimack
,
P. K.
,
Kelmanson
,
M. A.
, and
Summers
,
J. L.
,
2005
, “
Finite Element Simulation of Three-Dimensional Free-Surface Flow Problems
,”
J. Sci. Comput.
,
24
(
2
), pp.
147
162
.10.1007/s10915-004-4611-0
33.
Levitzky
,
M.
,
2007
,
Pulmonary Physiology 7e
,
McGraw-Hill Medical
,
New York
.
34.
Lai
,
S. K.
,
Wang
,
Y. Y.
,
Wirtz
,
D.
, and
Hanes
,
J.
,
2009
, “
Micro- and Macrorheology of Mucus
,”
Adv. Drug Delivery Rev.
,
61
(
2
), pp.
86
100
.10.1016/j.addr.2008.09.012
35.
Comsol,
2008
, 2008 User Manual for the COMSOL Multiphysics Software Package, COMSOL Inc., Burlington MA.
36.
Dailey
,
H. L.
, and
Ghadiali
,
S. N.
,
2007
, “
Fluid–Structure Analysis of Microparticle Transport in Deformable Pulmonary Alveoli
,”
J. Aerosol Sci.
,
38
(
3
), pp.
269
288
.10.1016/j.jaerosci.2007.01.001
37.
Bellani
,
G.
,
Amigoni
,
M.
, and
Pesenti
,
A.
,
2011
, “
Positron Emission Tomography in ARDS: A New Look at an Old Syndrome
,”
Minerva Anestesiol.
,
77
(
4
), pp.
439
447
.
38.
Moerer
,
O.
,
Hahn
,
G.
, and
Quintel
,
M.
,
2011
, “
Lung Impedance Measurements to Monitor Alveolar Ventilation
,”
Curr. Opin. Crit. Care
,
17
(
3
), pp.
260
267
.10.1097/MCC.0b013e3283463c9c
39.
Perchiazzi
,
G.
,
Rylander
,
C.
,
Vena
,
A.
,
Derosa
,
S.
,
Polieri
,
D.
,
Fiore
,
T.
,
Giuliani
,
R.
, and
Hedenstierna
,
G.
,
2011
, “
Lung Regional Stress and Strain as a Function of Posture and Ventilatory Mode
,”
J. Appl. Physiol.
,
110
(
5
), pp.
1374
1383
.10.1152/japplphysiol.00439.2010
40.
Plataki
,
M.
, and
Hubmayr
,
R. D.
,
2010
, “
The Physical Basis of Ventilator-Induced Lung Injury
,”
Expert Rev. Respir. Med.
,
4
(
3
), pp.
373
385
.10.1586/ers.10.28
41.
Oeckler
,
R. A.
, and
Hubmayr
,
R. D.
,
2008
, “
Cell Wounding and Repair in Ventilator Injured Lungs
,”
Respir. Physiol. Neurobiol.
,
163
(
1–3
), pp.
44
53
.10.1016/j.resp.2008.06.019
42.
Oeckler
,
R. A.
,
Lee
,
W. Y.
,
Park
,
M. G.
,
Kofler
,
O.
,
Rasmussen
,
D. L.
,
Lee
,
H. B.
,
Belete
,
H.
,
Walters
,
B. J.
,
Stroetz
,
R. W.
, and
Hubmayr
,
R. D.
,
2010
, “
Determinants of Plasma Membrane Wounding by Deforming Stress
,”
Am. J. Physiol. Lung Cell. Mol. Physiol.
,
299
(
6
), pp.
L826
833
.10.1152/ajplung.00217.2010
43.
Poornima
,
J.
, and
Vengadesan
,
S.
,
2012
, “
Numerical Simulation of Bubble Transport in a Bifurcating Microchannel: A Preliminary Study
,”
ASME J. Biomech. Eng.
,
134
(
8
), p.
081005
.10.1115/1.4006975
44.
Zheng
,
Y.
,
Anderson
,
J. C.
,
Suresh
,
V.
, and
Grotberg
,
J. B.
,
2005
, “
Effect of Gravity on Liquid Plug Transport Through an Airway Bifurcation Model
,”
ASME J. Biomech. Eng.
,
127
(
5
), pp.
798
806
.10.1115/1.1992529
45.
Hazel
,
A. L.
, and
Heil
,
M.
,
2008
, “
The Influence of Gravity on the Steady Propagation of a Semi-Infinite Bubble Into a Flexible Channel
,”
Phys. Fluids
,
20
(
9
), p.
092109
.10.1063/1.2982520
46.
Hazel
,
A. L.
, and
Heil
,
M.
,
2006
, “
Finite-Reynolds-Number Effects in Steady, Three-Dimensional Airway Reopening
,”
ASME J. Biomech. Eng.
,
128
(
4
), pp.
573
578
.10.1115/1.2206203
47.
Zielinski
,
R.
,
Mihai
,
C.
,
Kniss
,
D. A.
, and
Ghadiali
,
S. N.
,
2013
, “
Finite Element Analysis of Traction Force Microscopy: Influences of Cell Mechanics, Adhesion and Morphology
,”
ASME J. Biomech. Eng.
,
135
(
7
), p.
071009
.10.1115/1.4024467
48.
Sera
,
T.
,
Fujioka
,
H.
,
Yokota
,
H.
,
Makinouchi
,
A.
,
Himeno
,
R.
,
Schroter
,
R. C.
, and
Tanishita
,
K.
,
2003
, “
Three-Dimensional Visualization and Morphometry of Small Airways From Microfocal X-Ray Computed Tomography
,”
J. Biomech.
,
36
(
11
), pp.
1587
1594
.10.1016/S0021-9290(03)00179-9
49.
Jensen
,
O. E.
,
Horsburgh
,
M. K.
,
Halpern
,
D.
, and
Gaver
,
D. P.
,
2002
, “
The Steady Propagation of a Bubble in a Flexible-Walled Channel: Asymptotic and Computational Models
,”
Phys. Fluids
,
14
(
2
), pp.
443
457
.10.1063/1.1432694
50.
Higuita-Castro
,
N.
,
Mihai
,
C.
,
Hansford
,
D. J.
, and
Ghadiali
,
S. N.
,
2011
, “
Influence of Airway Wall Compliance on Epithelial Cell Injury During Cyclic Airway Reopening
,”
FASEB J.
,
25
, p.
1035.4
.
51.
Sheer
,
F. J.
,
Swarts
,
J. D.
, and
Ghadiali
,
S. N.
,
2012
, “
Three-Dimensional Finite Element Analysis of Eustachian Tube Function Under Normal and Pathological Conditions
,”
Med. Eng. Phys.
,
34
(
5
), pp.
605
616
.10.1016/j.medengphy.2011.09.008
52.
Sheer
,
F. J.
,
Swarts
,
J. D.
, and
Ghadiali
,
S. N.
,
2010
, “
Finite Element Analysis of Eustachian Tube Function in Cleft Palate Infants Based on Histological Reconstructions
,”
Cleft Palate Craniofac. J.
,
47
(
6
), pp.
600
610
.10.1597/09-131
You do not currently have access to this content.