It is well known that blood has non-Newtonian properties, but it is generally accepted that blood behaves as a Newtonian fluid at shear rates above 100 s−1. However, in transient conditions, there are times and locations where the shear rate is well below 100 s−1, and it is reasonable to infer that non-Newtonian effects could become important. In this study, purely viscous non-Newtonian (generalized Newtonian) properties of blood are incorporated into the simulation-based framework for cardiovascular surgery planning developed by Taylor et al. (1999, “Predictive Medicine: Computational Techniques in Therapeutic Decision Making,” Comput. Aided Surg., 4, pp. 231–247; 1998, “Finite Element Modeling of Blood Flow in Arteries,” Comput. Methods Appl. Mech. Eng., 158, pp. 155–196). Equations describing blood flow are solved in a patient-based abdominal aortic aneurysm model under steady and physiological flow conditions. Direct numerical simulation (DNS) is used, and the complex flow is found to be constantly transitioning between laminar and turbulent in both the spatial and temporal sense. It is found for the case simulated that using the non-Newtonian viscosity modifies the solution in subtle ways that yield a mesh-independent solution with fewer degrees of freedom than the Newtonian counterpart. It appears that in regions of separated flow, the lower shear rate produces higher viscosity with the non-Newtonian model, which reduces the associated resolution needs. When considering the real case of pulsatile flow, high shear layers lead to greater unsteadiness in the Newtonian case relative to the non-Newtonian case. This, in turn, results in a tendency for the non-Newtonian model to need fewer computational resources even though it has to perform additional calculations for the viscosity. It is also shown that both viscosity models predict comparable wall shear stress distribution. This work suggests that the use of a non-Newtonian viscosity models may be attractive to solve cardiovascular flows since it can provide simulation results that are presumably physically more realistic with at least comparable computational effort for a given level of accuracy.

References

References
1.
Moore
,
J. E.
, and
Ku
,
D. N.
,
1994
, “
Pulsatile Velocity Measurements in a Model of the Human Abdominal Aorta Under Resting Conditions
,”
J. Biomech.
,
116
(3), pp.
337
346
.10.1115/1.2895740
2.
Taylor
,
C. A.
,
Hughes
,
T. J. R.
, and
Zarins
,
C. K.
,
1998
, “
Finite Element Modeling of Three-Dimensional Pulsatile Flow in the Abdominal Aorta: Relevance to Atherosclerosis
,”
Ann. Biomed. Eng.
,
26
(
6
), pp.
975
987
.10.1114/1.140
3.
Taylor
,
C. A.
,
Hughes
,
T. J. R.
, and
Zarins
,
C. K.
,
1999
, “
Effect of Exercise on Hemodynamic Conditions in the Abdominal Aorta
,”
J. Vasc. Surg.
,
29
(6), pp.
1077
1089
.10.1016/S0741-5214(99)70249-1
4.
Caro
,
C. G.
,
Fitzgerald
,
J. M.
, and
Schroter
,
R. C.
,
1971
, “
Atheroma and Arterial Wall Shear: Observation, Correlation and Proposal of a Shear Dependent Mass Transfer Mechanism for Atherogenesis
,”
Proc. R. Soc. London, Ser. B
,
177
(1046), pp.
109
159
.10.1098/rspb.1971.0019
5.
Friedman
,
M. H.
,
Peters
,
O. J.
,
Bargero
,
C. B.
,
Hutchins
,
G. M.
, and
Mark
,
F. F.
,
1981
, “
Correlation Between Intimal Thickness and Fluid Shear in Human Arteries
,”
Atherosclerosis
,
39
(3), pp.
425
436
.10.1016/0021-9150(81)90027-7
6.
Gibson
,
C. M.
,
Diaz
,
L.
,
Kandarpa
,
K.
,
Sacks
,
F. M.
,
Pasternak
,
R. C.
,
Sandor
,
T.
,
Feldman
,
C.
, and
Stone
,
P. H.
,
1993
, “
Relation of Vessel Wall Shear-Stress to Atherosclerosis Progression in Human Coronary-Arteries
,”
Arteriosclerosis Thrombosis
,
13
(
2
), pp.
310
315
.10.1161/01.ATV.13.2.310
7.
Giddens
,
D. P.
,
Zarins
,
C. K.
, and
Glagov
,
S.
,
1993
, “
The Role of Fluid-Mechanics in the Localization and Detection of Atherosclerosis
,”
ASME J. Biomech. Eng.
,
115
(
4
), pp.
588
594
.10.1115/1.2895545
8.
Ku
,
D. N.
,
Giddens
,
D. P.
,
Zarins
,
C. K.
, and
Glagov
,
S.
,
1985
, “
Pulsatile Flow and Atherosclerosis in the Human Carotid Bifurcation—Positive Correlation Between Plaque Location and Low and Oscillating Shear-Stress
,”
Arteriosclerosis
,
5
(
3
), pp.
293
302
.10.1161/01.ATV.5.3.293
9.
Malek
,
A. M.
,
Alper
,
S. L.
, and
Izumo
,
S.
,
1999
, “
Hemodynamic Shear Stress and Its Role in Atherosclerosis
,”
JAMA-J. Am. Med. Assoc.
,
282
(
21
), pp.
2035
2042
.10.1001/jama.282.21.2035
10.
Nerem
,
R. M.
,
1992
, “
Vascular Fluid-Mechanics, the Arterial-Wall, and Atherosclerosis
,”
ASME J. Biomech. Eng.
,
114
(
3
), pp.
274
282
.10.1115/1.2891384
11.
Zarins
,
C. K.
,
Giddens
,
D. P.
,
Bharadvaj
,
B. K.
,
Sottiurai
, V
. S.
,
Mabon
,
R. F.
, and
Glagov
,
S.
,
1983
, “
Carotid Bifurcation Atherosclerosis Quantitative Correlation of Plaque Localization With Flow Velocity Profiles and Wall Shear-Stress
,”
Circ. Res.
,
53
(
4
), pp.
502
514
.10.1161/01.RES.53.4.502
12.
Caro
,
C. G.
,
2001
, “
Vascular Fluid Dynamics and Vascular Biology and Disease
,”
Math. Methods Appl. Sci.
,
24
, pp.
1311
1324
.10.1002/mma.181
13.
Liepsch
,
D.
,
2002
, “
An Introduction to Biofluid Mechanics—Basic Models and Applications
,”
J. Biomech.
,
35
, pp.
415
435
.10.1016/S0021-9290(01)00185-3
14.
Palmen
,
D. E. M.
,
Gijsen
,
F. J. H.
,
van de Vosse
,
F. N.
, and
Janssen
,
J. D.
,
1997
, “
Diagnosing Minor Stenoses in Carotid Artery Bifurcation Models Using the Disturbed Velocity Field
,”
J. Vasc. Invest.
,
3
(
1
), pp.
26
41
.
15.
Perktold
,
K.
, and
Resch
,
M.
,
1990
, “
Numerical Flow Studies in Human Carotid Artery Bifurcations: Basic Discussion of the Geometry Factor in Atherogenesis
,”
J. Biomed. Eng.
,
12
(2), pp.
111
123
.10.1016/0141-5425(90)90131-6
16.
Perktold
,
K.
,
Resch
,
M.
, and
Peter
,
R. O.
,
1991
, “
Three-Dimensional Numerical Analysis of the Pulsatile Flow and Wall Shear Stress in the Carotid Artery Bifurcation
,”
J. Biomech.
,
24
(
6
), pp.
409
420
.10.1016/0021-9290(91)90029-M
17.
Kirpalani
,
A.
,
Park
,
H.
,
Butany
,
J.
,
Johnston
,
K. W.
, and
Ojha
,
M.
,
1999
, “
Velocity and Wall Shear Stress Patterns in the Human Right Coronary Artery
,”
ASME J. Biomech. Eng.
,
12
, pp.
370
375
.10.1115/1.279833
18.
Myers
,
J. G.
,
Moore
,
J. A.
,
Ojha
,
M.
,
Johnston
,
K. W.
, and
Ethier
,
C. R.
,
2001
, “
Factors Influencing Blood Flow Patterns in the Human Right Coronary Artery
,”
Ann. Biomed. Eng.
,
29
(2), pp.
109
120
.10.1114/1.1349703
19.
Budwig
,
R.
,
Elger
,
D.
,
Hooper
,
H.
, and
Slippy
,
J.
,
1993
, “
Steady Flow in Abdominal Aortic Aneurysm Models
,”
ASME J. Biomech. Eng.
,
115
(4A), pp.
418
423
.10.1115/1.2895506
20.
Li
,
Z.
, and
Kleinstreurer
,
C.
,
2005
, “
Blood Flow and Structure Interaction in a Stented Abdominal Aortic Aneurysm Model
,”
Med. Eng. Phys.
,
27
(5), pp.
369
382
.10.1016/j.medengphy.2004.12.003
21.
Berger
,
S. A.
, and
Jou
,
L. D.
,
2000
, “
Flows in Stenotic Vessels
,”
Annu. Rev. Fluid Mech.
,
32
, pp.
347
382
.10.1146/annurev.fluid.32.1.347
22.
Pedley
,
T. J.
,
1980
,
The Fluid Mechanics of Large Blood Vessels
,
Cambridge University
,
Cambridge
.
23.
Gijsen
,
F. J. H.
,
Allanic
,
E.
,
van de Vosse
,
F. N.
, and
Janssen
,
J. D.
,
1999
, “
The Influence of the Non-Newtonian Properties of Blood on the Flow in Large Arteries: Unsteady Flow in a 90 Degrees Curved Tube
,”
J. Biomech.
,
32
(
7
), pp.
705
713
.10.1016/S0021-9290(99)00014-7
24.
Johnston
,
B. M.
,
Johnston
,
P. R.
,
Corney
,
S.
, and
Kilpatrick
,
D.
,
2004
, “
Non-Newtonian Blood Flow in Human Right Coronary Arteries: Steady State Simulations
,”
J. Biomech.
,
37
(
5
), pp.
709
720
.10.1016/j.jbiomech.2003.09.016
25.
Rodkiewicz
,
C. M.
,
Sinha
,
P.
, and
Kennedy
,
J. S.
,
1990
, “
On the Application of a Constitutive Equation for Whole Human Blood
,”
ASME J. Biomech. Eng.
,
112
(2), pp.
198
206
.10.1115/1.2891172
26.
Tu
,
C.
, and
Deville
,
M.
,
1996
, “
Pulsatile Flow of Non-Newtonian Fluids Through Arterial Stenoses
,”
J. Biomech.
,
29
(
7
), pp.
899
908
.10.1016/0021-9290(95)00151-4
27.
Ballyk
,
P. D.
,
Steinman
,
D. A.
, and
Ethier
,
C. R.
,
1994
, “
Simulation of Non-Newtonian Blood Flow in an End-to-Side Anastomosis
,”
Biorheology
,
31
(
5
), pp.
565
586
.
28.
Cho
,
Y. I.
, and
Kensey
,
K. R.
, “
Effects of the Non-Newtonian Viscosity of Blood on Flows in a Diseased Arterial Vessel. Part 1: Steady Flows
,”
Biorheology
,
28
, pp.
241
262
.
29.
Perktold
,
K.
,
Peter
,
R.
, and
Resch
,
M.
,
1989
, “
Pulsatile Non-Newtonian Blood Flow Simulation Through a Bifurcation With an Aneurism
,”
Biorheology
,
26
, pp.
1011
1030
.
30.
Chung
,
T. J.
,
2002
,
Computational Fluid Dynamics
,
Cambridge University
,
Cambridge
.
31.
Vanka
,
S. P.
,
2013
, “
2012 Freeman Scholar Lecture: Computational Fluid Dynamics on Graphics Processing Units
,”
ASME J. Fluids Eng.
,
135
(6),
061401
.10.1115/1.4023858
32.
Bolotnov
, I
. A.
,
Jansen
,
K. E.
,
Drew
,
D. A.
,
Oberai
,
A. A.
,
Lahey
,
R. T.
, and
Podowski
,
M. Z.
,
2011
, “
Detached Direct Numerical Simulations of Turbulent Two-Phase Bubbly Channel Flow
,”
Int. J. Multiphase Flow
,
37
(6), pp.
647
659
.10.1016/j.ijmultiphaseflow.2011.03.002
33.
Kwok
,
W. Y.
,
2003
, “
Performance Analysis of PHASTA on NCSA Intel IA-64 Linux Cluster
,” in
Computational Science - ICCS 2003
, Vol.
2660
, pp.
43
52
.10.1007/3-540-44864-0
34.
Steele
,
B. N.
,
Draney
,
M. T.
,
Ku
,
J. P.
, and
Taylor
,
C. A.
,
2003
, “
Internet-Based System for Simulation-Based Medical Planning for Cardiovascular Disease
,”
IEEE Trans. Inf. Technol. Biomed.
,
7
(
2
), pp.
123
129
.10.1109/TITB.2003.811880
35.
Taylor
,
C. A.
,
Draney
,
M. T.
,
Ku
,
J. P.
,
Parker
,
D.
,
Steele
,
B. N.
,
Wang
,
K.
, and
Zarins
,
C. K.
,
1999
, “
Predictive Medicine: Computational Techniques in Therapeutic Decision Making
,”
Comput. Aided Surg
,
4
(5), pp.
231
247
.10.3109/10929089909148176
36.
Taylor
,
C. A.
,
Hughes
,
T. J. R.
, and
Zarins
,
C. K.
, “
Finite Element Modeling of Blood Flow in Arteries
,”
Comput. Methods Appl. Mech. Eng.
,
158
(1–2), pp.
155
196
.10.1016/S0045-7825(98)80008-X
37.
Sahni
,
O.
,
Muller
,
J.
,
Jansen
,
K. E.
,
Shephard
,
M. S.
, and
Taylor
,
C. A.
,
2006
, “
Efficient Anisotropic Adaptive Discretization of the Cardiovascular System
,”
Comput. Methods Appl. Mech. Eng.
,
195
(
41–43
), pp.
5634
5655
.10.1016/j.cma.2005.10.018
38.
Warsi
,
Z. U. A.
,
1993
,
Fluid Dynamics, Theoretical and Computational Approaches
,
CRC
, Boca Raton, FL.
39.
Bird
,
R. B.
,
Amrstrong
,
R. C.
, and
Hassager
,
O.
,
1987
,
Dynamics of Polymeric Liquids: Volume 1, Fluid Mechanics
,
John Wiley & Sons, Inc
., New York.
40.
Tanner
,
R. L.
,
1985
,
Engineering Rheology
,
Oxford University
, New York.
41.
Morrison
,
F. A.
,
2001
,
Understanding Rheology
,
Oxford University
, New York.
42.
Amornsamankul
,
S.
,
Wiwatanapataphee
,
B.
,
Wu
,
Y. H.
, and
Lendbury
,
Y.
, “
Effect of Non-Newtonian Behaviour of Blood on Pulsatile Flows in Stenotic Arteries
,”
Int. J. Biomed. Sci.
,
1
(
1
), pp.
42
46
.
43.
Jansen
,
K. E.
,
1999
, “
A Stabilized Finite Element Method for Computing Turbulence
,”
Comput. Methods Appl. Mech. Eng.
,
174
, pp.
299
317
.10.1016/S0045-7825(98)00301-6
44.
Jansen
,
K. E.
,
Collis
,
S. S.
,
Whiting
,
C. H.
, and
Shakib
,
F.
,
1999
, “
A Better Consistency for Low-Order Stabilized Finite Element Methods
,”
Comput. Methods Appl. Mech. Eng.
,
174
(3–4), pp.
153
170
.10.1016/S0045-7825(98)00284-9
45.
Whiting
,
C. H.
, and
Jansen
,
K. E.
,
2001
, “
A Stabilized Finite Element Method for the Incompressible Navier–Stokes Equations Using a Hierarchical Basis
,”
Int. J. Numer. Methods Eng.
,
35
(1), pp.
93
116
.10.1002/1097-0363(20010115)35:1<93::AID-FLD85>3.0.CO;2-G
46.
Whiting
,
C. H.
,
Jansen
,
K. E.
, and
Dey
,
S.
,
2003
, “
Hierarchical Basis in Stabilized Finite Element Methods for Compressible Flows
,”
Comput. Methods Appl. Mech. Eng.
,
192
(47–48), pp.
5167
5185
.10.1016/j.cma.2003.07.011
47.
Jansen
,
K. E.
,
Whiting
,
C. H.
, and
Hulbert
,
G. M.
,
1999
, “
A Generalized-α Method for Integrating the Filtered Navier–Stokes Equations With a Stabilized Finite Element Method
,”
Comput. Methods Appl. Mech. Eng.
,
190
(3–4), pp.
305
319
.10.1016/S0045-7825(00)00203-6
48.
Les
,
A. S.
,
Chang
,
C. P.
,
Darney
,
M. T.
,
Figueroa
,
C. A.
,
LaDisa
,
J. F.
,
Park
,
J. M.
,
Herfkens
,
R. J.
,
Dalman
,
R. L.
, and
Taylor
,
C. A.
,
2007
, “
Hemodynamics in Human Abdominal Aortic Aneurysms During Rest and Simulated Exercise
,”
ASME
Paper No. SBC2007-176209.10.1115/SBC2007-176209
49.
Les
,
A. S.
,
Shadden
,
S. C.
,
Figueroa
,
C. A.
,
Park
,
J. M.
,
Tedesco
,
M. M.
,
Herfkens
,
R. J.
,
Dalman
,
R. L.
, and
Taylor
,
C. A.
,
2010
, “
Quantification of Hemodynamics in Abdominal Aortic Aneurysms During Rest and Exercise Using Magnetic Resonance Imaging and Computational Fluid Dynamics
,”
Ann. Biomed. Eng.
,
38
(
4
), pp.
1288
1313
.10.1007/s10439-010-9949-x
50.
Womersley
,
J.
,
1955
, “
Method for the Calculation of Velocity, Rate of Flow and Viscous Drag in Arteries When the Pressure Gradient is Known
,”
J. Physiol.
,
127
, pp.
553
563
.
51.
Vignon-Clementel
,
I. E.
,
Figueroa
,
C. A.
,
Jansen
,
K. E.
, and
Taylor
,
C. A.
, “
Outflow Boundary Conditions for Three-Dimensional Finite Element Modeling of Blood Flow and Pressure in Arteries
,”
Comput. Methods Appl. Mech. Eng.
,
195
(29–32), pp.
3776
3796
.10.1016/j.cma.2005.04.014
52.
Figueroa
,
C. A.
,
Vignon-Clementel
, I
. E.
,
Jansen
,
K. E.
,
Hughes
,
T. J. R.
, and
Taylor
,
C. A.
,
2006
, “
A Coupled Momentum Method for Modeling Blood Flow in Three-Dimensional Deformable Arteries
,”
Comput. Methods Appl. Mech. Eng.
,
195
(41–43), pp.
5685
5706
.10.1016/j.cma.2005.11.011
53.
Kim
,
H. J.
,
Figueroa
,
C. A.
,
Hughes
,
T. J. R.
,
Jansen
,
K. E.
, and
Taylor
,
C. A.
, 2009, “
Augmented Lagrangian Method for Constraining the Shape of Velocity Profiles at Outlet Boundaries for Three-Dimensional Finite Element Simulations of Blood Flow
,”
Comput. Methods Appl. Mech. Eng.
195
(45–46), pp. 3551–3566.10.1016/j.cma.2009.02.012
54.
Sahni
,
O.
,
Carothers
,
C.
,
Shephard
,
M.
, and
Jansen
,
K.
,
2009
, “
Strong Scaling Analysis of a Parallel, Unstructured, Implicit Solver and the Influence of the Operating System Interference
,”
Sci. Prog.
,
17
(
3
), pp.
261
274
.10.3233/SPR-2009-0287
55.
Zhou
,
M.
,
Sahni
,
O.
,
Kim
,
H.
,
Figueroa
,
C.
,
Taylor
,
C.
,
Shephard
,
M.
, and
Jansen
,
K.
, “
Cardiovascular Flow Simulation at Extreme Scale
,”
Comput. Mech.
,
46
(
1
), pp.
71
82
.10.1007/s00466-009-0450-z
You do not currently have access to this content.