This paper establishes a procedure for numerical analysis of a hip joint using the finite volume method. Patient-specific hip joint geometry is segmented directly from computed tomography and magnetic resonance imaging datasets and the resulting bone surfaces are processed into a form suitable for volume meshing. A high resolution continuum tetrahedral mesh has been generated, where a sandwich model approach is adopted; the bones are represented as a stiffer cortical shells surrounding more flexible cancellous cores. Cartilage is included as a uniform thickness extruded layer and the effect of layer thickness is investigated. To realistically position the bones, gait analysis has been performed giving the 3D positions of the bones for the full gait cycle. Three phases of the gait cycle are examined using a finite volume based custom structural contact solver implemented in open-source software OpenFOAM.

References

References
1.
Brekelmans
,
W. A. M.
,
Poort
,
H. W.
, and
Slooff
,
T. J. J. H.
,
1972
, “
A New Method to Analyse the Mechanical Behaviour of Skeletal Parts
,”
Acta Orthopaedica
,
43
(
5
), pp.
301
317
.10.3109/17453677208998949
2.
Dalstra
,
M.
,
Huiskes
,
R.
, and
van Erning
L.
,
1995
, “
Development and Validation of a Three-Dimensional Finite Element Model of the Pelvic Bone
,”
ASME J. Biomech. Eng.
,
117
(3), pp.
272
278
.10.1115/1.2794181
3.
Anderson
,
A. E.
,
Peters
,
C. L.
,
Tuttle
,
B. D.
, and
Weiss
,
J. A.
,
2005
, “
Subject-Specific Finite Element Model of the Pelvis: Development, Validation and Sensitivity Studies
,”
ASME J. Biomech. Eng.
,
127
(3), pp.
364
373
.10.1115/1.1894148
4.
Anderson
,
A. E.
,
Ellis
,
B. J.
,
Maas
,
S. A.
, and
Weiss
,
J. A.
,
2010
, “
Effects of Idealized Joint Geometry on Finite Element Predictions of Cartilage Contact Stresses in the Hip
,”
J. Biomech.
,
43
, pp.
1351
1357
.10.1016/j.jbiomech.2010.01.010
5.
Bachtar
,
F.
,
Chen
,
X.
, and
Hisada
,
T.
,
2006
, “
Finite Element Contact Analysis of the Hip Joint
,”
Med. Biol. Eng. Comput.
,
44
, pp.
643
651
.10.1007/s11517-006-0074-9
6.
Majumder
,
S.
,
Roychowdhury
,
A.
, and
Pal
,
S.
,
2004
, “
Variations of Stress in Pelvic Bone During Normal Walking, Considering All Active Muscles
,”
Trends Biomater Artif Organs
,
17
(
2
), pp.
48
53
. Available at http://www.biomaterials.org.in/ojs/index.php/tibao/article/view/221
7.
Silvestri.
C.
,
2008
, “
Development and Validation of a Knee-Thigh-Hip LSDYNA Model of a 50th Percentile Male
,” Ph.D. thesis,
Worcester Polytechnic Institute
.
8.
Anderson
,
A. E.
,
Ellis
,
B. J.
,
Maas
,
S. A.
,
Peters
,
C. L.
, and
Weiss
,
J. A.
,
2008
, “
Validation of Finite Element Predictions of Cartilage Contact Pressure in the Human Hip Joint
,”
ASME J. Biomech. Eng.
,
130
(5), p.
051008
.10.1115/1.2953472
9.
Anderson
,
A. E.
,
Ellis
,
B. J.
,
Peters
,
C. L.
, and
Weiss
,
J. A.
,
2008
, “
Cartilage Thickness: Factors Influencing Multidetector CT Measurements in a Phantom Study
,”
Radiology
,
246
(
1
), pp.
133
141
.10.1148/radiol.2462070082
10.
Ota
,
T.
,
Yamamoto
,
I.
, and
Morita
,
R.
,
1999
, “
Fracture Simulation of the Femoral Bone Using the Finite-Element Method: How a Fracture Initiates and Proceeds
,”
J. Bone and Mineral Metabolisms
,
17
(
2
), pp.
108
112
.10.1007/s007740050072
11.
Yosibash
,
Z.
,
Padan
,
R.
,
Joskowicz
,
L.
, and
Milgrom
,
C.
,
2007
, “
A CT-Based High-Order Finite Element Analysis of the Human Proximal Femur Compared To In-Vitro Experiments
,”
ASME J. Biomech. Eng.
,
129
(
3
), pp.
297
309
.10.1115/1.2720906
12.
Taddei
,
F.
,
Martelli
,
S.
,
Reggiani
,
B.
,
Cristofolini
,
L.
, and
Viceconti
,
M.
,
2006
, “
Finite-Element Modeling of Bones from CT Data: Sensitivity to Geometry and Material Uncertainties
,”
IEEE Trans. Biomed. Eng.
,
53
(
11
), pp.
2194
2200
.10.1109/TBME.2006.879473
13.
Orwoll
,
E. S.
,
Marshall
,
L. M.
,
Nielson
,
C. M.
,
Cummings
,
S. R.
,
Lapidus
,
J.
,
Cauley
,
J. A.
,
Ensrud
,
K.
,
Lane
,
N.
,
Hoffmann
,
P. R.
,
Kopperdahl
,
D. L.
, and
Keaveny
,
T. M.
,
2009
, “
Finite Element Analysis of the Proximal Femur and Hip Fracture Risk in Older Men
,”
J. Bone and Mineral Res.
,
24
(
3
), pp.
475
483
.10.1359/jbmr.081201
14.
Harris
,
M. D.
,
Anderson
,
A. E.
,
Henak
,
C. R.
,
Ellis
,
B. J.
,
Peters
,
C. L.
, and
Weiss
,
J. A.
,
2012
, “
Finite Element Prediction of Cartilage Contact Stresses in Normal Human Hips
,”
J. Orthop. Res.
,
30
, pp.
1133
1139
.10.1002/jor.22040
15.
Oonishi
,
H.
,
Isha
,
H.
, and
Hasegawa
,
T.
,
1983
, “
Mechanical Analysis of the Human Pelvis and Its Application to the Artificial Hip Joint–By Means of the Three Dimensional Finite Element Method
,”
J. Biomech.
,
16
, pp.
427
444
.10.1016/0021-9290(83)90075-1
16.
Brown
,
T. D.
, and
DiGioia
,
A. M.
,
1984
, “
A Contact-Coupled Finite Element Analysis of the Natural Adult Hip
,”
J. Biomech.
,
17
, pp.
437
448
.10.1016/0021-9290(84)90035-6
17.
Afoke
,
N. Y. P.
,
Byers
,
P. D.
, and
Hutton
,
W. C.
,
1987
, “
Contact Pressures in the Human Hip Joint
,”
J. Bone Joint Surgery
,
69-B(4)
, pp.
536
541
. Available at http://www.bjj.boneandjoint.org.uk/content/69-B/4/536.full.pdf
18.
Dalstra
,
M.
, and
Huiskes
,
R.
,
1995
, “
Load Transfer Across the Pelvic Bone
,”
J. Biomech.
,
28
(
6
), pp.
715
724
.10.1016/0021-9290(94)00125-N
19.
Russell
,
M. E.
,
Shivanna
,
K. H.
,
Grosland
,
N. M.
, and
Pedersen
,
D. R.
,
2006
, “
Cartilage Contact Pressure Elevations in Dysplastic Hips: A Chronic Overload Model
,”
J. Orthop. Surg. Res.
,
1
, p.
6
.10.1186/1749-799X-1-6
20.
Shivanna
,
K. H.
,
Grosland
,
N. M.
,
Russell
,
M. E.
, and
Pedersen
,
D. R.
,
2008
, “
Diarthrodial Joint Contact Models: Finite Element Model Development of the Human Hip
,”
Eng. Comput.
,
24
, pp.
155
163
.10.1007/s00366-007-0083-9
21.
Demirdzić
,
I.
,
Martinović
,
D.
, and
Ivanković
,
A.
,
1988
, “
Numerical Simulation of Thermal Deformation in Welded Workpiece
(in Croatian), Zavarivanje
31
, pp.
209
219
.
22.
Ivanković
,
A.
,
Muzaferija
,
A.
, and
Demirdzić
,
I.
,
1997
, “
Finite Volume Method and Multigrid Acceleration in Modelling of Rapid Crack Propagation in Full-Scale Pipe Test
,”
Comput. Mech.
,
20
(
1–2
), pp.
46
52
.10.1007/s004660050215
23.
Georgiou
,
I.
,
Ivanković
,
A.
,
Kinloch
,
A. J.
, and
Tropsa
,
V.
,
2003
, “
Rate Dependent Fracture Behaviour of Adhesively Bonded Joints
,” Vol.
32
,
Fracture of Polymers, Composites and Adhesives II, Volume 32 of European Structural Integrity Society
,
A.
Pavan
,
B. R. K.
Blackman
, and
J. G.
Williams
, eds.,
Elsevier
,
New York
, pp.
317
328
.
24.
Karač
,
A.
,
Blackman
,
B. R. K.
,
Cooper
,
V.
,
Kinloch
,
A. J.
,
Rodriguez Sanchez
,
S.
,
Teo
,
W. S.
, and
Ivanković
,
A.
,
2011
, “
Modelling the Fracture Behaviour of Adhesively-Bonded Joints as a Function of Test Rate
,”
Eng. Fract. Mech.
,
78
, pp.
973
989
.10.1016/j.engfracmech.2010.11.014
25.
Demirdzić
,
I.
, and
Muzaferija
,
S.
,
1995
, “
Numerical Method for Coupled Fluid Flow, Heat Transfer and Stress Analysis Using Unstructured Moving Meshes With Cells of Arbitrary Topology
,”
Comput. Methods Appl. Mech. Eng.
,
125
(
1–4
), pp.
235
255
.10.1016/0045-7825(95)00800-G
26.
Jasak
,
H.
, and
Weller
,
H. G.
,
2000
, “
Application of the Finite Volume Method and Unstructured Meshes to Linear Elasticity
,”
Int. J. Numer. Methods Eng.
,
48
, pp.
267
287
.10.1002/(SICI)1097-0207(20000520)48:2<267::AID-NME884>3.0.CO;2-Q
27.
Fryer
,
Y. D.
,
Bailey
,
C.
,
Cross
,
M.
, and
Lai
,
C. H.
,
1991
, “
A Control Volume Procedure for Solving Elastic Stress-Strain Equations on an Unstructured Mesh
,”
Appl. Math. Model.
,
15
(
11–12
), pp.
639
645
.10.1016/S0307-904X(09)81010-X
28.
Wheel
,
M. A.
,
1996
, “
A Geometrically Versatile Finite Volume Formulation for Plane Elastostatic Stress Analysis
,”
J. Strain Anal. Eng. Des.
,
31
(
2
), pp.
111
116
.10.1243/03093247V312111
29.
Tuković
,
Ž.
,
Ivanković
,
A.
, and
Karač
,
A.
,
2012
, “
Finite Volume Stress Analysis In Multi-Material Linear Elastic Body
,”
Int. J. Numer. Methods Eng.
,
93
(
4
), pp.
400
419
.10.1002/nme.4390
30.
Demirdzić
,
I.
, and
Martinović
,
D.
,
1993
, “
Finite Volume Method for Thermo-Elasto-Plastic Stress Analysis
,”
Comput. Methods Appl. Mech. Eng.
,
109
, pp.
331
349
.10.1016/0045-7825(93)90085-C
31.
Demirdzić
,
I.
,
Dzafarović
,
E.
, and
Ivanković
,
A. I.
,
2005
, “
Finite-Volume Approach to Thermoviscoelasticity
,”
Numer. Heat Transfer, Part B: Fundamentals
,
47
(
3
), pp.
213
237
.10.1080/10407790590901675
32.
Bijelonja
,
I.
,
Demirdzić
,
I.
, and
Muzaferija
,
S.
,
2005
, “
A Finite Volume Method for Large Strain Analysis of Incompressible Hyperelastic Materials
,”
Int. J. Numer. Methods Eng.
,
64
(
12
), pp.
1594
1609
.10.1002/nme.1413
33.
Cardiff
,
P.
,
Karač
,
A.
, and
Ivanković
,
A.
,
2012
, “
Development of a Finite Volume Contact Solver Based on the Penalty Method
,”
Comput. Mater. Sci.
,
64
, pp.
283
284
.10.1016/j.commatsci.2012.03.011
34.
Tropsa
,
V.
,
Georgiou
,
I.
,
Ivanković
,
A.
,
Kinloch
,
A. J.
, and
Williams
,
J. G.
,
2006
, “
OpenFOAM in Non-Linear Stress Analysis: Modelling of Adhesive Joints
,” First OpenFOAM Workshop, Zagreb,
Croatia
.
35.
Jasak
,
H.
, and
Weller
,
H.
,
2000
, “
Finite Volume Methodology for Contact Problems of Linear Elastic Solids
,”
Proceedings of the third International Conference of Croatian Society of Mechanics
,
Cavtat/Dubrovnik
,
7
, pp.
253
260
.
36.
Cardiff
,
P.
,
2012
, “
Development of the Finite Volume Method for Hip Joint Stress Analysis
,” Ph.D. thesis,
University College Dublin
.
37.
Karač
,
A.
, and
Ivanković
,
2009
, “
Investigating the Behaviour of Fluid-Filled Polyethylene Containers Under Base Drop Impact: A Combined Experimental/Numerical Approach
,”
Int. J. Impact Eng.
,
36
(
4
), pp.
621
631
.10.1016/j.ijimpeng.2008.08.007
38.
Kanyanta
,
V.
,
Ivanković
,
A.
, and
Karač
,
A.
,
2009
, “
Validation of a Fluid-Structure Interaction Numerical Model for Predicting Flow Transients in Arteries
,”
J. Biomech.
,
42
(
11
), pp.
1705
1712
.10.1016/j.jbiomech.2009.04.023
39.
Kelly
,
A.
, and
O'Rourke
,
M. J.
,
2010
, “
Two System, Single Analysis, Fluid-Structure Interaction Modelling of the Abdominal Aortic Aneurysms
,”
Proc. IMechE Part H
,
224
(
H8
), pp.
955
970
.10.1243/09544119JEIM725
40.
Weller
,
H. G.
,
Tabor
,
G.
,
Jasak
,
H.
, and
Fureby
,
C.
,
1998
, “
A Tensorial Approach to Computational Continuum Mechanics Using Object Orientated Techniques
,”
Comput. Phys.
,
12
(
6
), pp.
620
631
.10.1063/1.168744
41.
The OpenFOAM Extend Project
,
2012
, http://www.extend-project.de
42.
The OpenFOAM Foundation
,
2012
, http://www.openfoam.org
43.
Cardiff
,
P.
,
Karać
,
A.
,
Flavin
,
R.
,
FitzPatrick
,
D.
, and
Ivanković
,
A.
,
2012
, “
Modelling the Muscles for Hip Joint Stress Analysis Using a Finite Volume Methodology
,”
18th Bioengineering In Ireland
,
Belfast, Northern Ireland
.
44.
Bergmann
,
G.
,
Deuretzbacher
,
G.
,
Heller
,
M.
,
Graichen
,
F.
,
Rohlmann
,
A.
,
Strauss
,
J.
, and
Duda.
G. N.
,
2001
, “
Hip Contact Forces and Gait Patterns From Routine Activities
,”
J. Biomech.
,
34
, pp.
859
871
.10.1016/S0021-9290(01)00040-9
45.
G. E. Healthcare
,
2012
, http://www.gehealthcare.com
46.
Pieper
,
S.
,
Lorensen
,
B.
,
Schroeder
,
W.
, and
Kikinis
,
R.
,
2006
, “
The NA-MIC Kit: ITK, VTK, Pipelines, Grids and 3D Slicer as an Open Platform for the Medical Image Computing Community
,”
Proceedings of the Third IEEE International Symposium on Biomedical Imaging: From Nano to Macro
, Vol.
1
, pp.
698
701
.
47.
Misch
,
C. E.
,
2008
,
Contemporary Implant Dentistry
,
3rd ed.
,
Mosby Elsevier
.
48.
Vollmer
,
J.
,
Mencl
,
R.
, and
Muller.
H.
,
1999
, “
Improved Laplacian Smoothing of Noisy Surface Meshes
,”
Eurographics
,
18
(
3
), pp.
131
138
.10.1111/1467-8659.00334
50.
Cignoni
,
P.
,
Rocchini
,
C.
, and
Scopigno
,
R.
,
1998
, “
Metro: Measuring Error on Simplified Surfaces
,”
Computer Graphics Forum
,
17
(
2
), pp.
167
174
.10.1111/1467-8659.00236
51.
Campen
,
M.
,
Kobbelt
,
L.
, and
Attene.
M.
,
2012
, “
A Practical Guide to Polygon Mesh Repairing
,”
Eurographics 33rd Annual Conference of the European Association for Computer Graphics
,
Cagliari, Sardinia, France
.
52.
Cifuentes
A. O.
, and
Kalbag
,
A.
,
1992
, “
A Performance Study of Tetrahedral and Hexahedral Elements in 3-D Finite Element Structural Analysis
,”
Finite Elements in Analysis and Design
,
12
, pp.
313
318
.10.1016/0168-874X(92)90040-J
53.
Ramos
,
A.
, and
Simoes
,
J. A.
,
2006
, “
Tetrahedral Versus Hexahedral Finite Elements in Numerical Modeling of the Proximal Femur
,”
Med. Eng. Phys.
,
28
, pp.
916
924
.10.1016/j.medengphy.2005.12.006
54.
ANSYS Inc. ANSYS ICEM CFD 13.0 user manual,
2011
, http://www.ansys.com/Products/Other+Products/ANSYS+ICEM+CFD
55.
Charnwood Dynamics Ltd.
,
2011
, http://www.codamotion.com
56.
Central Remedial Clinic, Gait analysis at the gait lab
,
2011
, http://www.crc.ie
57.
Kitware Inc. and VTK
,
2012
, VTK File Formats: The VTK User's Guide. www.kitware.com
58.
Kitware Inc. and Paraview
, ParaView User's Guide,
2012
, http://www.paraview.org
59.
Cardiff
,
P.
,
Karac
,
A.
,
Tuković
,
Z.
, and
Ivanković
,
A.
,
2012
, “
Development of a Finite Volume Based Structural Solver for Large Rotation of Non-Orthogonal Meshes
,” Seventh OpenFOAM Workshop, Darmstadt,
Germany
.
60.
Goel
,
V. K.
,
Valliappan
,
S.
, and
Svensson
,
N. L.
,
1978
, “
Stresses in the Normal Pelvis
,”
Comput. Biol. Med.
,
8
, pp.
91
104
.10.1016/0010-4825(78)90001-X
61.
Dalstra
,
M.
,
Huiskes
,
R.
,
Odgaard
,
A.
, and
Van Erning
,
L.
,
1993
, “
Mechanical and Textural Properties of Pelvic Trabecular Bone
,”
J. Biomech.
,
26
(
4–5
), pp.
523
535
.10.1016/0021-9290(93)90014-6
62.
Jonkers
,
I.
,
Sauwen
,
N.
,
Lenaerts
,
G.
,
Mulier
,
M.
,
Van Der Perre
,
G.
, and
Jaecques
,
S.
,
2008
, “
Relation Between Subject-Specific Hip Joint Loading, Stress Distribution in the Proximal Femur and Bone Mineral Density Changes After Total Hip Replacement
,”
J. Biomech.
,
41
, pp.
3405
3413
.10.1016/j.jbiomech.2008.09.011
63.
Pustoc'h
,
A.
, and
Cheze
,
L.
,
2009
, “
Normal and Osteoarthritic Hip Joint Mechanical Behaviour: A Comparison Study
,”
Med. Biol. Eng. Comput.
,
47
(
4
), pp.
375
383
.10.1007/s11517-009-0457-9
64.
Taylor
,
M.
,
Tanner
,
K. E.
,
Freeman
,
M. A. R.
, and
Yettram
,
A. L.
,
1995
, “
Cancellous Bone Stresses Surrounding The Femoral Component of a Hip Prosthesis: An Elastic-Plastic Finite Element Analysis
,”
Med. Eng. Phys.
,
17
(
7
), pp.
544
550
.10.1016/1350-4533(95)00018-I
65.
Mesfar
,
W.
, and
Shirazi-Adl
,
A.
,
2005
, “
Biomechanics of the Knee Joint in Flexion Under Various Quadriceps Forces
,”
The Knee
,
12
, pp.
424
434
.10.1016/j.knee.2005.03.004
66.
Muzaferija
,
S.
,
1994
, “
Adaptive Finite Volume Method Flow Prediction Using Unstructured Meshes and Multigrid Approach
,” British Thesis Service.
University of London
.
67.
Hodge
,
W. A.
,
Fijan
,
R. S.
,
Carlson
,
K. L.
,
Burgess
,
R. G.
,
Harris
,
W. H.
, and
Mann
,
R. W.
,
1986
, “
Contact Pressures in the Human Hip Joint Measured In Vivo
,”
Proc. Natl. Acad. Sci. USA
,
83
(
9
), pp.
2879
2883
.10.1073/pnas.83.9.2879
68.
Phillips
,
A. T. M.
,
Pankaj
,
P.
,
Howie
,
C. R.
,
Usmani
,
A. S.
, and
Simpson
,
A. H. R. W.
,
2007
, “
Finite Element Modelling of the Pelvis: Inclusion of Muscular and Ligamentous Boundary Conditions
,”
Med. Eng. Phys.
,
29
(
7
), pp.
739
748
.10.1016/j.medengphy.2006.08.010
69.
Wolff
,
J.
,
1986
,
The Law of Bone Remodeling (translation of the German 1892 edition)
,
Springer
,
Berlin Heidelberg New York
.
70.
Cardiff
,
P.
,
Karač
,
A.
, and
Ivanković
,
A
,
2014
, “
A Large Strain Finite Volume Method for Orthotropic Bodies with General Material Orientations
,”
Computer Methods Appl. Mech. Eng.
,
268
, pp.
1
18
.10.1016/j.cma.2013.09.008
71.
Carolan
,
D.
,
Tukovic
,
Ž.
,
Murphy
,
N
., and
Ivanković
,
A
,
2013
, “
Arbitrary Crack Propagation in Multi-phase Materials Using the Finite Volume Method
,”
Comput. Materials Sci.
,
69
, pp.
153
159
.10.1016/j.commatsci.2012.11.049
You do not currently have access to this content.