Multiple computational models have been developed to study knee biomechanics. However, the majority of these models are mainly validated against a limited range of loading conditions and/or do not include sufficient details of the critical anatomical structures within the joint. Due to the multifactorial dynamic nature of knee injuries, anatomic finite element (FE) models validated against multiple factors under a broad range of loading conditions are necessary. This study presents a validated FE model of the lower extremity with an anatomically accurate representation of the knee joint. The model was validated against tibiofemoral kinematics, ligaments strain/force, and articular cartilage pressure data measured directly from static, quasi-static, and dynamic cadaveric experiments. Strong correlations were observed between model predictions and experimental data (r > 0.8 and p < 0.0005 for all comparisons). FE predictions showed low deviations (root-mean-square (RMS) error) from average experimental data under all modes of static and quasi-static loading, falling within 2.5 deg of tibiofemoral rotation, 1% of anterior cruciate ligament (ACL) and medial collateral ligament (MCL) strains, 17 N of ACL load, and 1 mm of tibiofemoral center of pressure. Similarly, the FE model was able to accurately predict tibiofemoral kinematics and ACL and MCL strains during simulated bipedal landings (dynamic loading). In addition to minimal deviation from direct cadaveric measurements, all model predictions fell within 95% confidence intervals of the average experimental data. Agreement between model predictions and experimental data demonstrates the ability of the developed model to predict the kinematics of the human knee joint as well as the complex, nonuniform stress and strain fields that occur in biological soft tissue. Such a model will facilitate the in-depth understanding of a multitude of potential knee injury mechanisms with special emphasis on ACL injury.

References

References
1.
Daniel
,
D. M.
,
Stone
,
M. L.
,
Dobson
,
B. E.
,
Fithian
,
D. C.
,
Rossman
,
D. J.
, and
Kaufman
,
K. R.
,
1994
, “
Fate of the ACL-Injured Patient. A Prospective Outcome Study
,”
Am. J. Sports Med.
,
22
(
5
), pp.
632
644
.10.1177/036354659402200511
2.
Majewski
,
M.
,
Susanne
,
H.
, and
Klaus
,
S.
,
2003
, “
Epidemiology of Athletic Knee Injuries: A 10-Year Study
,”
Knee
,
13
(
3
), pp. 184–188.10.1016/j.knee.2006.01.005
3.
Kim
,
S.
,
Bosque
,
J.
,
Meehan
,
J. P.
,
Jamali
,
A.
, and
Marder
,
R.
,
2011
, “
Increase in Outpatient Knee Arthroscopy in the United States: A Comparison of National Surveys of Ambulatory Surgery, 1996 and 2006
,”
J. Bone Jt. Surg., Am. Vol.
,
93
(
11
), pp.
994
1000
.10.2106/JBJS.I.01618
4.
Demorat
,
G.
,
Weinhold
,
P.
,
Blackburn
,
T.
,
Chudik
,
S.
, and
Garrett
,
W.
,
2004
, “
Aggressive Quadriceps Loading Can Induce Noncontact Anterior Cruciate Ligament Injury
,”
Am. J. Sports Med.
,
32
(
2
), pp.
477
483
.10.1177/0363546503258928
5.
Hashemi
,
J.
,
Breighner
,
R.
,
Jang
,
T. H.
,
Chandrashekar
,
N.
,
Ekwaro-Osire
,
S.
, and
Slauterbeck
,
J. R.
,
2010
, “
Increasing Pre-Activation of the Quadriceps Muscle Protects the Anterior Cruciate Ligament During the Landing Phase of a Jump: An in Vitro Simulation
,”
Knee
,
17
(
3
), pp.
235
241
.10.1016/j.knee.2009.09.010
6.
Meyer
,
E. G.
, and
Haut
,
R. C.
,
2008
, “
Anterior Cruciate Ligament Injury Induced by Internal Tibial Torsion or Tibiofemoral Compression
,”
J. Biomech.
,
41
(
16
), pp.
3377
3383
.10.1016/j.jbiomech.2008.09.023
7.
Wall
,
S. J.
,
Rose
,
D. M.
,
Sutter
,
E. G.
,
Belkoff
,
S. M.
, and
Boden
,
B. P.
,
2012
, “
The Role of Axial Compressive and Quadriceps Forces in Noncontact Anterior Cruciate Ligament Injury: A Cadaveric Study
,”
Am. J. Sports Med.
,
40
(
3
), pp.
568
573
.10.1177/0363546511430204
8.
Kiapour
,
A. M.
,
Quatman
,
C. E.
,
Ditto
,
R. C.
,
Levine
,
J. W.
,
Wordeman
,
S. C.
,
Hewett
,
T. E.
,
Goel
,
V. K.
, and
Demetropoulos
,
C. K.
,
2012
, “
Global Quasi-Static Mechanical Characterization of the Human Knee Under Single- and Multi-Axis Unconstrained Loading Conditions
,”
Proceedings of 2012 ASME Summer Bioengineering Conference
, 44809, pp. 1119–1120.10.1115/SBC2012-80676
9.
Levine
,
J. W.
,
Kiapour
,
A. M.
,
Quatman
,
C. E.
,
Wordeman
,
S. C.
,
Goel
,
V. K.
,
Hewett
,
T. E.
, and
Demetropoulos
,
C. K.
,
2013
, “
Clinically Relevant Injury Patterns After an Anterior Cruciate Ligament Injury Provide Insight Into Injury Mechanisms
,”
Am. J. Sports Med.
,
41
(
2
), pp.
385
395
.10.1177/0363546512465167
10.
Lipps
,
D. B.
,
Oh
,
Y. K.
,
Ashton-Miller
,
J. A.
, and
Wojtys
,
E. M.
,
2012
, “
Morphologic Characteristics Help Explain the Gender Difference in Peak Anterior Cruciate Ligament Strain During a Simulated Pivot Landing
,”
Am. J. Sports Med.
,
40
(
1
), pp. 32–40.10.1177/0363546511422325
11.
Griffith
,
C. J.
,
Laprade
,
R. F.
,
Johansen
,
S.
,
Armitage
,
B.
,
Wijdicks
,
C.
, and
Engebretsen
,
L.
,
2009
, “
Medial Knee Injury: Part 1, Static Function of the Individual Components of the Main Medial Knee Structures
,”
Am. J. Sports Med.
,
37
(
9
), pp.
1762
1770
.10.1177/0363546509333852
12.
Ford
,
K. R.
,
Myer
,
G. D.
, and
Hewett
,
T. E.
,
2003
, “
Valgus Knee Motion During Landing in High School Female and Male Basketball Players
,”
Med. Sci. Sports Exercise
,
35
(
10
), pp.
1745
1750
.10.1249/01.MSS.0000089346.85744.D9
13.
Krosshaug
,
T.
,
Nakamae
,
A.
,
Boden
,
B. P.
,
Engebretsen
,
L.
,
Smith
,
G.
,
Slauterbeck
,
J. R.
,
Hewett
,
T. E.
, and
Bahr
,
R.
,
2007
, “
Mechanisms of Anterior Cruciate Ligament Injury in Basketball: Video Analysis of 39 Cases
,”
Am. J. Sports Med.
,
35
(
3
), pp.
359
367
.10.1177/0363546506293899
14.
Hewett
,
T. E.
,
Myer
,
G. D.
,
Ford
,
K. R.
,
Heidt
,
R. S.
, Jr
.
,
Colosimo
,
A. J.
,
Mclean
,
S. G.
,
Van Den Bogert
,
A. J.
,
Paterno
,
M. V.
, and
Succop
,
P.
,
2005
, “
Biomechanical Measures of Neuromuscular Control and Valgus Loading of the Knee Predict Anterior Cruciate Ligament Injury Risk in Female Athletes: A Prospective Study
,”
Am. J. Sports Med.
,
33
(
4
), pp.
492
501
.10.1177/0363546504269591
15.
Agel
,
J.
,
Arendt
,
E. A.
, and
Bershadsky
,
B.
,
2005
, “
Anterior Cruciate Ligament Injury in National Collegiate Athletic Association Basketball and Soccer: A 13-Year Review
,”
Am. J. Sports Med.
,
33
(
4
), pp.
524
530
.10.1177/0363546504269937
16.
Arendt
,
E. A.
,
Agel
,
J.
, and
Dick
,
R.
,
1999
, “
Anterior Cruciate Ligament Injury Patterns Among Collegiate Men and Women
,”
J. Athl. Train.
,
34
(
2
), pp.
86
92
. Available at: http://www.ncbi.nlm.nih.gov.ezp-prod1.hul.harvard.edu/pmc/articles/PMC1322895/pdf/jathtrain00006-0014.pdf
17.
Boden
,
B. P.
,
Dean
,
G. S.
,
Feagin
,
J. A.
, and
Garrett
,
W. E.
,
2000
, “
Mechanisms of Anterior Cruciate Ligament Injury
,”
Orthopedics
,
23
(
6
), pp.
573
578
. Available at: http://cat.inist.fr/?aModele=afficheN&cpsidt=1431609
18.
Koga
,
H.
,
Nakamae
,
A.
,
Shima
,
Y.
,
Iwasa
,
J.
,
Myklebust
,
G.
,
Engebretsen
,
L.
,
Bahr
,
R.
, and
Krosshaug
,
T.
,
2010
, “
Mechanisms for Noncontact Anterior Cruciate Ligament Injuries: Knee Joint Kinematics in 10 Injury Situations From Female Team Handball and Basketball
,”
Am. J. Sports Med.
,
38
(
11
), pp.
2218
2225
.10.1177/0363546510373570
19.
Abdel-Rahman
,
E. M.
, and
Hefzy
,
M. S.
,
1998
, “
Three-Dimensional Dynamic Behaviour of the Human Knee Joint Under Impact Loading
,”
Med. Eng. Phys.
,
20
(
4
), pp.
276
290
.10.1016/S1350-4533(98)00010-1
20.
Adouni
,
M.
,
Shirazi-Adl
,
A.
, and
Shirazi
,
R.
,
2012
, “
Computational Biodynamics of Human Knee Joint in Gait: From Muscle Forces to Cartilage Stresses
,”
J. Biomech.
,
45
(
12
), pp.
2149
2156
.10.1016/j.jbiomech.2012.05.040
21.
Anderson
,
F. C.
, and
Pandy
,
M. G.
,
2001
, “
Dynamic Optimization of Human Walking
,”
ASME J. Biomech. Eng.
,
123
(
5
), pp.
381
390
.10.1115/1.1392310
22.
Baldwin
,
M. A.
,
Clary
,
C. W.
,
Fitzpatrick
,
C. K.
,
Deacy
,
J. S.
,
Maletsky
,
L. P.
, and
Rullkoetter
,
P. J.
,
2012
, “
Dynamic Finite Element Knee Simulation for Evaluation of Knee Replacement Mechanics
,”
J. Biomech.
,
45
(
3
), pp.
474
483
.10.1016/j.jbiomech.2011.11.052
23.
Beillas
,
P.
,
Papaioannou
,
G.
,
Tashman
,
S.
, and
Yang
,
K. H.
,
2004
, “
A New Method to Investigate in Vivo Knee Behavior Using a Finite Element Model of the Lower Limb
,”
J. Biomech.
,
37
(
7
), pp.
1019
1030
.10.1016/j.jbiomech.2003.11.022
24.
Bendjaballah
,
M. Z.
,
Shirazi-Adl
,
A.
, and
Zukor
,
D. J.
,
1997
, “
Finite Element Analysis of Human Knee Joint in Varus-Valgus
,”
Clin. Biomech. (Bristol, Avon)
,
12
(
3
), pp.
139
148
.10.1016/S0268-0033(97)00072-7
25.
Blankevoort
,
L.
, and
Huiskes
,
R.
,
1996
, “
Validation of a Three-Dimensional Model of the Knee
,”
J. Biomech.
,
29
(
7
), pp.
955
961
.10.1016/0021-9290(95)00149-2
26.
Donahue
,
T. L.
,
Hull
,
M. L.
,
Rashid
,
M. M.
, and
Jacobs
,
C. R.
,
2002
, “
A Finite Element Model of the Human Knee Joint for the Study of Tibio-Femoral Contact
,”
ASME J. Biomech. Eng.
,
124
(
3
), pp.
273
280
.10.1115/1.1470171
27.
Gardiner
,
J. C.
, and
Weiss
,
J. A.
,
2003
, “
Subject-Specific Finite Element Analysis of the Human Medial Collateral Ligament During Valgus Knee Loading
,”
J. Orthop. Res.
,
21
(
6
), pp.
1098
1106
.10.1016/S0736-0266(03)00113-X
28.
Li
,
G.
,
Gil
,
J.
,
Kanamori
,
A.
, and
Woo
,
S. L.
,
1999
, “
A Validated Three-Dimensional Computational Model of a Human Knee Joint
,”
ASME J. Biomech. Eng.
,
121
(
6
), pp.
657
662
.10.1115/1.2800871
29.
Limbert
,
G.
,
Taylor
,
M.
, and
Middleton
,
J.
,
2004
, “
Three-Dimensional Finite Element Modelling of the Human ACL: Simulation of Passive Knee Flexion With a Stressed and Stress-Free ACL
,”
J. Biomech.
,
37
(
11
), pp.
1723
1731
.10.1016/j.jbiomech.2004.01.030
30.
Mommersteeg
,
T. J.
,
Huiskes
,
R.
,
Blankevoort
,
L.
,
Kooloos
,
J. G.
,
Kauer
,
J. M.
, and
Maathuis
,
P. G.
,
1996
, “
A Global Verification Study of a Quasi-Static Knee Model With Multi-Bundle Ligaments
,”
J. Biomech.
,
29
(
12
), pp.
1659
1664
.10.1016/S0021-9290(96)80022-4
31.
Pena
,
E.
,
Calvo
,
B.
,
Martinez
,
M. A.
, and
Doblare
,
M.
,
2006
, “
A Three-Dimensional Finite Element Analysis of the Combined Behavior of Ligaments and Menisci in the Healthy Human Knee Joint
,”
J. Biomech.
,
39
(
9
), pp.
1686
1701
.10.1016/j.jbiomech.2005.04.030
32.
Penrose
,
J. M.
,
Holt
,
G. M.
,
Beaugonin
,
M.
, and
Hose
,
D. R.
,
2002
, “
Development of an Accurate Three-Dimensional Finite Element Knee Model
,”
Comput. Methods Biomech. Biomed. Eng.
,
5
(
4
), pp.
291
300
.10.1080/1025584021000009724
33.
Ramaniraka
,
N. A.
,
Saunier
,
P.
,
Siegrist
,
O.
, and
Pioletti
,
D. P.
,
2007
, “
Biomechanical Evaluation of Intra-Articular and Extra-Articular Procedures in Anterior Cruciate Ligament Reconstruction: A Finite Element Analysis
,”
Clin. Biomech. (Bristol, Avon)
,
22
(
3
), pp.
336
343
.10.1016/j.clinbiomech.2006.10.006
34.
Shelburne
,
K. B.
,
Torry
,
M. R.
, and
Pandy
,
M. G.
,
2006
, “
Contributions of Muscles, Ligaments, and the Ground-Reaction Force to Tibiofemoral Joint Loading During Normal Gait
,”
J. Orthop. Res.
,
24
(
10
), pp.
1983
1990
.10.1002/jor.20255
35.
Shin
,
C. S.
,
Chaudhari
,
A. M.
, and
Andriacchi
,
T. P.
,
2007
, “
The Influence of Deceleration Forces on ACL Strain During Single-Leg Landing: A Simulation Study
,”
J. Biomech.
,
40
(
5
), pp.
1145
1152
.10.1016/j.jbiomech.2006.05.004
36.
Shirazi
,
R.
,
Shirazi-Adl
,
A.
, and
Hurtig
,
M.
,
2008
, “
Role of Cartilage Collagen Fibrils Networks in Knee Joint Biomechanics Under Compression
,”
J. Biomech.
,
41
(
16
), pp.
3340
3348
.10.1016/j.jbiomech.2008.09.033
37.
Song
,
Y.
,
Debski
,
R. E.
,
Musahl
,
V.
,
Thomas
,
M.
, and
Woo
,
S. L.
,
2004
, “
A Three-Dimensional Finite Element Model of the Human Anterior Cruciate Ligament: A Computational Analysis With Experimental Validation
,”
J. Biomech.
,
37
(
3
), pp.
383
390
.10.1016/S0021-9290(03)00261-6
38.
Xie
,
F.
,
Yang
,
L.
,
Guo
,
L.
,
Wang
,
Z. J.
, and
Dai
,
G.
,
2009
, “
A Study on Construction Three-Dimensional Nonlinear Finite Element Model and Stress Distribution Analysis of Anterior Cruciate Ligament
,”
ASME J. Biomech. Eng.
,
131
(
12
), p.
121007
.10.1115/1.4000167
39.
Quatman
,
C. E.
,
Kiapour
,
A.
,
Myer
,
G. D.
,
Ford
,
K. R.
,
Demetropoulos
,
C. K.
,
Goel
,
V. K.
, and
Hewett
,
T. E.
,
2011
, “
Cartilage Pressure Distributions Provide a Footprint to Define Female Anterior Cruciate Ligament Injury Mechanisms
,”
Am. J. Sports Med.
,
39
(
8
), pp.
1706
1713
.10.1177/0363546511400980
40.
Andriacchi
,
T. P.
,
Briant
,
P. L.
,
Bevill
,
S. L.
, and
Koo
,
S.
,
2006
, “
Rotational Changes at the Knee After ACL Injury Cause Cartilage Thinning
,”
Clin. Orthop. Relat. Res.
,
442
, pp.
39
44
.10.1097/01.blo.0000197079.26600.09
41.
Park
,
H. S.
,
Ahn
,
C.
,
Fung
,
D. T.
,
Ren
,
Y.
, and
Zhang
,
L. Q.
,
2010
, “
A Knee-Specific Finite Element Analysis of the Human Anterior Cruciate Ligament Impingement Against the Femoral Intercondylar Notch
,”
J. Biomech.
,
43
(
10
), pp.
2039
2042
.10.1016/j.jbiomech.2010.03.015
42.
Dhaher
,
Y. Y.
,
Kwon
,
T. H.
, and
Barry
,
M.
,
2010
, “
The Effect of Connective Tissue Material Uncertainties on Knee Joint Mechanics Under Isolated Loading Conditions
,”
J. Biomech.
,
43
(
16
), pp.
3118
3125
.10.1016/j.jbiomech.2010.08.005
43.
Kiapour
,
A. M.
,
Kaul
,
V.
,
Kiapour
,
A.
,
Quatman
,
C. E.
,
Wordeman
,
S. C.
,
Hewett
,
T. E.
,
Demetropoulos
,
C. K.
, and
Goel
,
V. K.
,
2013
, “
The Effect of Ligament Modeling Technique on Knee Joint Kinematics: A Finite Element Study
,”
Appl. Math.
,
4
, pp.
91
97
.10.4236/am.2013.45A011
44.
Gering
,
D. T.
,
Nabavi
,
A.
,
Kikinis
,
R.
,
Hata
,
N.
,
O’donnell
,
L. J.
,
Grimson
,
W. E.
,
Jolesz
,
F. A.
,
Black
,
P. M.
, and
Wells
,
W. M.
, III
,
2001
, “
An Integrated Visualization System for Surgical Planning and Guidance Using Image Fusion and an Open Mr
,”
J. Magn. Reson. Imaging
,
13
(
6
), pp.
967
975
.10.1002/jmri.1139
45.
Bartling
,
S. H.
,
Peldschus
,
K.
,
Rodt
,
T.
,
Kral
,
F.
,
Matthies
,
H.
,
Kikinis
,
R.
, and
Becker
,
H.
,
2005
, “
Registration and Fusion of CT and MRI of the Temporal Bone
,”
J. Comput. Assist. Tomogr.
,
29
(
3
), pp.
305
310
.10.1097/01.rct.0000160425.63884.5b
46.
Fitzpatrick
,
J. M.
,
Hill
,
D. L.
,
Shyr
,
Y.
,
West
,
J.
,
Studholme
,
C.
, and
Maurer
,
C. R.
, Jr.
,
1998
, “
Visual Assessment of the Accuracy of Retrospective Registration of MR and CT Images of the Brain
,”
IEEE Trans. Med. Imaging
,
17
(
4
), pp.
571
585
.10.1109/42.730402
47.
Grosland
,
N. M.
,
Shivanna
,
K. H.
,
Magnotta
,
V. A.
,
Kallemeyn
,
N. A.
,
Devries
,
N. A.
,
Tadepalli
,
S. C.
, and
Lisle
,
C.
,
2009
, “
IA-FEMesh: An Open-Source, Interactive, Multiblock Approach to Anatomic Finite Element Model Development
,”
Comput. Methods Programs Biomed.
,
94
(
1
), pp.
96
107
.10.1016/j.cmpb.2008.12.003
48.
Linde
,
F.
,
1994
, “
Elastic and Viscoelastic Properties of Trabecular Bone by a Compression Testing Approach
,”
Dan. Med. Bull.
,
41
(
2
), pp.
119
138
.
49.
Goldstein
,
S. A.
,
1987
, “
The Mechanical Properties of Trabecular Bone: Dependence on Anatomic Location and Function
,”
J. Biomech.
,
20
(
11–12
), pp.
1055
1061
.10.1016/0021-9290(87)90023-6
50.
Kuhn
,
J. L.
,
Goldstein
,
S. A.
,
Ciarelli
,
M. J.
, and
Matthews
,
L. S.
,
1989
, “
The Limitations of Canine Trabecular Bone as a Model for Human: A Biomechanical Study
,”
J. Biomech.
,
22
(
2
), pp.
95
107
.10.1016/0021-9290(89)90032-8
51.
Lotz
,
J. C.
,
Gerhart
,
T. N.
, and
Hayes
,
W. C.
,
1991
, “
Mechanical Properties of Metaphyseal Bone in the Proximal Femur
,”
J. Biomech.
,
24
(
5
), pp.
317
329
.10.1016/0021-9290(91)90350-V
52.
Mente
,
P. L.
, and
Lewis
,
J. L.
,
1994
, “
Elastic Modulus of Calcified Cartilage is an Order of Magnitude Less Than That of Subchondral Bone
,”
J. Orthop. Res.
,
12
(
5
), pp.
637
647
.10.1002/jor.1100120506
53.
Donzelli
,
P. S.
,
Spilker
,
R. L.
,
Ateshian
,
G. A.
, and
Mow
,
V. C.
,
1999
, “
Contact Analysis of Biphasic Transversely Isotropic Cartilage Layers and Correlations With Tissue Failure
,”
J. Biomech.
,
32
(
10
), pp.
1037
1047
.10.1016/S0021-9290(99)00106-2
54.
Eberhardt
,
A. W.
,
Keer
,
L. M.
,
Lewis
,
J. L.
, and
Vithoontien
,
V.
,
1990
, “
An Analytical Model of Joint Contact
,”
ASME J. Biomech. Eng.
,
112
(
4
), pp.
407
413
.10.1115/1.2891204
55.
Armstrong
,
C. G.
,
Lai
,
W. M.
, and
Mow
,
V. C.
,
1984
, “
An Analysis of the Unconfined Compression of Articular Cartilage
,”
ASME J. Biomech. Eng.
,
106
(
2
), pp.
165
173
.10.1115/1.3138475
56.
Shepherd
,
D. E.
, and
Seedhom
,
B. B.
,
1999
, “
The ‘Instantaneous’ Compressive Modulus of Human Articular Cartilage in Joints of the Lower Limb
,”
Rheumatology
,
38
(
2
), pp.
124
132
.10.1093/rheumatology/38.2.124
57.
Yao
,
J.
,
Funkenbusch
,
P. D.
,
Snibbe
,
J.
,
Maloney
,
M.
, and
Lerner
,
A. L.
,
2006
, “
Sensitivities of Medial Meniscal Motion and Deformation to Material Properties of Articular Cartilage, Meniscus and Meniscal Attachments Using Design of Experiments Methods
,”
ASME J. Biomech. Eng.
,
128
(
3
), pp.
399
408
.10.1115/1.2191077
58.
Tissakht
,
M.
, and
Ahmed
,
A. M.
,
1995
, “
Tensile Stress-Strain Characteristics of the Human Meniscal Material
,”
J. Biomech.
,
28
(
4
), pp.
411
422
.10.1016/0021-9290(94)00081-E
59.
Skaggs
,
D. L.
,
Warden
,
W. H.
, and
Mow
,
V. C.
,
1994
, “
Radial Tie Fibers Influence the Tensile Properties of the Bovine Medial Meniscus
,”
J. Orthop. Res.
,
12
(
2
), pp.
176
185
.10.1002/jor.1100120205
60.
Fung
,
Y. C.
,
1981
,
Biomechanics: Mechanical Properties of Living Tissues
,
Springer
,
New York
.
61.
Woo
,
S. L.
,
Weiss
,
J. A.
,
Gomez
,
M. A.
, and
Hawkins
,
D. A.
,
1990
, “
Measurement of Changes in Ligament Tension With Knee Motion and Skeletal Maturation
,”
ASME J. Biomech. Eng.
,
112
(
1
), pp.
46
51
.10.1115/1.2891125
62.
Gasser
,
T. C.
,
Ogden
,
R. W.
, and
Holzapfel
,
G. A.
,
2006
, “
Hyperelastic Modelling of Arterial Layers With Distributed Collagen Fibre Orientations
,”
J. R. Soc., Interface
,
3
(
6
), pp.
15
35
.10.1098/rsif.2005.0073
63.
Hernandez
,
B.
,
Pena
,
E.
,
Pascual
,
G.
,
Rodriguez
,
M.
,
Calvo
,
B.
,
Doblare
,
M.
, and
Bellon
,
J. M.
,
2011
, “
Mechanical and Histological Characterization of the Abdominal Muscle. A Previous Step to Modelling Hernia Surgery
,”
J. Mech. Behav. Biomed. Mater.
,
4
(
3
), pp.
392
404
.10.1016/j.jmbbm.2010.11.012
64.
Woo
,
S. L.
,
Kanamori
,
A.
,
Zeminski
,
J.
,
Yagi
,
M.
,
Papageorgiou
,
C.
, and
Fu
,
F. H.
,
2002
, “
The Effectiveness of Reconstruction of the Anterior Cruciate Ligament With Hamstrings and Patellar Tendon. A Cadaveric Study Comparing Anterior Tibial and Rotational Loads
,”
J. Bone Jt. Surg., Am. Vol.
,
84A
(
6
), pp.
907
914
. Availale at: http://jbjs.org.ezp-prod1.hul.harvard.edu/article.aspx?articleid=25473
65.
Girgis
,
F. G.
,
Marshall
,
J. L.
, and
Monajem
,
A.
,
1975
, “
The Cruciate Ligaments of the Knee Joint. Anatomical, Functional and Experimental Analysis
,”
Clin. Orthop. Relat. Res.
,
106
, pp.
216
231
.10.1097/00003086-197501000-00033
66.
Butler
,
D. L.
,
Sheh
,
M. Y.
,
Stouffer
,
D. C.
,
Samaranayake
,
V. A.
, and
Levy
,
M. S.
,
1990
, “
Surface Strain Variation in Human Patellar Tendon and Knee Cruciate Ligaments
,”
ASME J. Biomech. Eng.
,
112
(
1
), pp.
38
45
.10.1115/1.2891124
67.
Quapp
,
K. M.
, and
Weiss
,
J. A.
,
1998
, “
Material Characterization of Human Medial Collateral Ligament
,”
ASME J. Biomech. Eng.
,
120
(
6
), pp.
757
763
.10.1115/1.2834890
68.
Laprade
,
R. F.
,
Engebretsen
,
A. H.
,
Ly
,
T. V.
,
Johansen
,
S.
,
Wentorf
,
F. A.
, and
Engebretsen
,
L.
,
2007
, “
The Anatomy of the Medial Part of the Knee
,”
J. Bone Jt. Surg., Am. Vol.
,
89
(
9
), pp.
2000
2010
.10.2106/JBJS.F.01176
69.
Laprade
,
R. F.
,
Ly
,
T. V.
,
Wentorf
,
F. A.
, and
Engebretsen
,
L.
,
2003
, “
The Posterolateral Attachments of the Knee: A Qualitative and Quantitative Morphologic Analysis of the Fibular Collateral Ligament, Popliteus Tendon, Popliteofibular Ligament, and Lateral Gastrocnemius Tendon
,”
Am. J. Sports Med.
,
31
(
6
), pp.
854
860
. Available at: http://ajs.sagepub.com/content/31/6/854.full.pdf+html
70.
Smirk
,
C.
, and
Morris
,
H.
,
2003
, “
The Anatomy and Reconstruction of the Medial Patellofemoral Ligament
,”
Knee
,
10
(
3
), pp.
221
227
.10.1016/S0968-0160(03)00038-3
71.
Amis
,
A. A.
,
Firer
,
P.
,
Mountney
,
J.
,
Senavongse
,
W.
, and
Thomas
,
N. P.
,
2003
, “
Anatomy and Biomechanics of the Medial Patellofemoral Ligament
,”
Knee
,
10
(
3
), pp.
215
220
.10.1016/S0968-0160(03)00006-1
72.
Shahane
,
S. A.
,
Ibbotson
,
C.
,
Strachan
,
R.
, and
Bickerstaff
,
D. R.
,
1999
, “
The Popliteofibular Ligament. An Anatomical Study of the Posterolateral Corner of the Knee
,”
J. Bone Jt. Surg.
, Br. Vol.,
81
(
4
), pp.
636
642
.10.1302/0301-620X.81B4.9501
73.
Atkinson
,
P.
,
Atkinson
,
T.
,
Huang
,
C.
, and
Doane
,
R.
,
2000
, “
A Comparison of the Mechanical and Dimensional Properties of the Human Medial and Lateral Patellofemoral Ligaments
,” Proceedings of the 46th Annual Meeting of the Orthopaedic Research Society, Orlando, FL.
74.
Delp
,
S. L.
,
Anderson
,
F. C.
,
Arnold
,
A. S.
,
Loan
,
P.
,
Habib
,
A.
,
John
,
C. T.
,
Guendelman
,
E.
, and
Thelen
,
D. G.
,
2007
, “
Opensim: Open-Source Software to Create and Analyze Dynamic Simulations of Movement
,”
IEEE Trans. Biomed. Eng.
,
54
(
11
), pp.
1940
1950
.10.1109/TBME.2007.901024
75.
Aalbersberg
,
S.
,
Kingma
,
I.
,
Ronsky
,
J. L.
,
Frayne
,
R.
, and
Van Dieen
,
J. H.
,
2005
, “
Orientation of Tendons in Vivo With Active and Passive Knee Muscles
,”
J. Biomech.
,
38
(
9
), pp.
1780
1788
.10.1016/j.jbiomech.2004.09.003
76.
Grood
,
E. S.
, and
Suntay
,
W. J.
,
1983
, “
A Joint Coordinate System for the Clinical Description of Three-Dimensional Motions: Application to the Knee
,”
ASME J. Biomech. Eng.
,
105
(
2
), pp.
136
144
.10.1115/1.3138397
77.
Kiapour
,
A. M.
,
Wordeman
,
S. C.
,
Paterno
,
M. V.
,
Quatman
,
C. E.
,
Levine
,
J. W.
,
Goel
,
V. K.
, and
Hewett
,
T. E.
,
2013
, “
Diagnostic Value of Knee Arthrometry in the Prediction of ACL Strain During Landing
,”
Orthopaedic Journal of Sports Medicine
,
1
(4)(suppl 1).10.1177/2325967113S00063
78.
Quatman
,
C. E.
,
Kiapour
,
A. M.
,
Demetropoulos
,
C. K.
,
Kiapour
,
A.
,
Wordeman
,
S. C.
,
Levine
,
J. W.
,
Goel
,
V. K.
, and
Hewett
,
T. E.
,
2013
, “
Preferential Loading of the ACL Compared With the MCL During Landing: A Novel in Sim Approach Yields the Multi-Planar Mechanism of Dynamic Valgus During Acl Injury
,”
Am. J. Sports Med.
Oct 11. [Epub ahead of print].10.1177/0363546513506558
79.
Kiapour
,
A. M.
,
Quatman
,
C. E.
,
Ditto
,
R. C.
,
Levine
,
J. W.
,
Wordeman
,
S. C.
,
Hewett
,
T. E.
,
Goel
,
V. K.
, and
Demetropoulos
,
C. K.
,
2011
, “
Influence of Axial Rotation Moments on ACL Strain: A Cadaveric Study of Single- and Multi-Axis Loading of the Knee
,” Proceedings of 37th ASB Annual Meeting.
80.
Kiapour
,
A. M.
,
2013
, “
Non-Contact ACL Injuries During Landing: Risk Factors and Mechanisms
,” Ph.D. thesis, The University of Toledo, Toledo, OH.
81.
Kiapour
,
A. M.
,
Quatman
,
C. E.
,
Goel
,
V. K.
,
Ditto
,
R. C.
,
Wordeman
,
S. C.
,
Levine
,
J. W.
,
Hewett
,
T. E.
, and
Demetropoulos
,
C. K.
,
2012
, “
Knee Articular Cartilage Pressure Distribution Under Single- and Multi-Axis Loading Conditions: Implications for ACL Injury Mechanism
,” Proceedings of 38th ASB Annual Meeting.
82.
Markolf
,
K. L.
,
Burchfield
,
D. M.
,
Shapiro
,
M. M.
,
Shepard
,
M. F.
,
Finerman
,
G. A.
, and
Slauterbeck
,
J. L.
,
1995
, “
Combined Knee Loading States That Generate High Anterior Cruciate Ligament Forces
,”
J. Orthop. Res.
,
13
(
6
), pp.
930
935
.10.1002/jor.1100130618
83.
Portney
,
L. G.
, and
Watkins
,
M. P.
,
1999
,
Foundations of Clinical Research: Applications to Practice
,
Prentice Hall
,
Englewood Cliffs, NJ
.
84.
Freeman
,
M. A.
, and
Pinskerova
,
V.
,
2005
, “
The Movement of the Normal Tibio-Femoral Joint
,”
J. Biomech.
,
38
(
2
), pp.
197
208
.10.1016/j.jbiomech.2004.02.006
85.
Blemker
,
S. S.
, and
Delp
,
S. L.
,
2005
, “
Three-Dimensional Representation of Complex Muscle Architectures and Geometries
,”
Ann. Biomed. Eng.
,
33
(
5
), pp.
661
673
.10.1007/s10439-005-1433-7
86.
Blemker
,
S. S.
,
Pinsky
,
P. M.
, and
Delp
,
S. L.
,
2005
, “
A 3D Model of Muscle Reveals the Causes of Nonuniform Strains in the Biceps Brachii
,”
J. Biomech.
,
38
(
4
), pp.
657
665
.10.1016/j.jbiomech.2004.04.009
87.
Atkinson
,
T. S.
,
Haut
,
R. C.
, and
Altiero
,
N. J.
,
1997
, “
A Poroelastic Model That Predicts Some Phenomenological Responses of Ligaments and Tendons
,”
ASME J. Biomech. Eng.
,
119
(
4
), pp.
400
405
.10.1115/1.2798285
88.
Laprade
,
R. F.
,
Tso
,
A.
, and
Wentorf
,
F. A.
,
2004
, “
Force Measurements on the Fibular Collateral Ligament, Popliteofibular Ligament, and Popliteus Tendon to Applied Loads
,”
Am. J. Sports Med.
,
32
(
7
), pp.
1695
1701
.10.1177/0363546503262694
89.
Markolf
,
K. L.
,
Gorek
,
J. F.
,
Kabo
,
J. M.
, and
Shapiro
,
M. S.
,
1990
, “
Direct Measurement of Resultant Forces in the Anterior Cruciate Ligament. An in Vitro Study Performed With a New Experimental Technique
,”
J. Bone Jt. Surg., Am. Vol.
,
72
(
4
), pp.
557
567
. Available at: http://jbjs.org.ezp-prod1.hul.harvard.edu/article.aspx?articleid=21273
90.
Kiapour
,
A. M.
,
Kiapour
,
A.
,
Demetropoulos
,
C. K.
,
Quatman
,
C. E.
,
Wordeman
,
S. C.
,
Hewett
,
T. E.
, and
Goel
,
V. K.
,
2013
, “
Novel Framework to Personalize Validated Generalized Finite Element Model: Implication for Individual-Based ACL Injury Risk Assessment
,” Proceedings of the 39th ASB Annual Meeting, American Society of Biomechanics, 2013 ASB Annual Meeting, Omaha, NE, September 4–7, 2013.
You do not currently have access to this content.