Previous dynamic analyses of the temporomandibular joint (TMJ) disc have not included a true preload, i.e., a step stress or strain beyond the initial tare load. However, due to the highly nonlinear stress-strain response of the TMJ disc, we hypothesized that the dynamic mechanical properties would greatly depend on the preload, which could then, in part, account for the large variation in the tensile stiffnesses reported for the TMJ disc in the literature. This study is the first to report the dynamic mechanical properties as a function of prestress. As hypothesized, the storage modulus (E′) of the disc varied by a factor of 25 in the mediolateral direction and a factor of 200 in the anteroposterior direction, depending on the prestress. Multiple constant strain rate sweeps were extracted and superimposed via strain-rate frequency superposition (SRFS), which demonstrated that the strain rate amplitude and strain rate were both important factors in determining the TMJ disc material properties, which is an effect not typically seen with synthetic materials. The presented analysis demonstrated, for the first time, the applicability of viscoelastic models, previously applied to synthetic polymer materials, to a complex hierarchical biomaterial such as the TMJ disc, providing a uniquely comprehensive way to capture the viscoelastic response of biological materials. Finally, we emphasize that the use of a preload, preferably which falls within the linear region of the stress-strain curve, is critical to provide reproducible results for tensile analysis of musculoskeletal tissues. Therefore, we recommend that future dynamic mechanical analyses of the TMJ disc be performed at a controlled prestress corresponding to a strain range of 5–10%.

References

References
1.
Kuboki
,
T.
,
Shinoda
,
M.
,
Orsini
,
M. G.
, and
Yamashita
,
A.
,
1997
, “
Viscoelastic Properties of the Pig Temporomandibular Joint Articular Soft Tissues of the Condyle and Disc
,”
J. Dent. Res.
,
76
(
11
), pp.
1760
1769
.10.1177/00220345970760110701
2.
Beatty
,
M. W.
,
Bruno
,
M. J.
,
Iwasaki
,
L. R.
, and
Nickel
,
J. C.
,
2001
, “
Strain Rate Dependent Orthotropic Properties of Pristine and Impulsively Loaded Porcine Temporomandibular Joint Disk
,”
J. Biomed. Mater. Res.
,
57
(
1
), pp.
25
34
.10.1002/1097-4636(200110)57:1<25::AID-JBM1137>3.0.CO;2-H
3.
Tanaka
,
E.
, and
van Eijden
,
T.
,
2003
, “
Biomechanical Behavior of the Temporomandibular Joint Disc
,”
Crit. Rev. Oral. Biol. Med.
,
14
(
2
), pp.
138
150
.10.1177/154411130301400207
4.
Detamore
,
M. S.
, and
Athanasiou
,
K. A.
,
2003
, “
Motivation, Characterization, and Strategy for Tissue Engineering the Temporomandibular Joint Disc
,”
Tissue Eng.
,
9
(
6
), pp.
1065
1087
.10.1089/10763270360727991
5.
Detamore
,
M. S.
, and
Athanasiou
,
K. A.
,
2003
, “
Structure and Function of the Temporomandibular Joint Disc: Implications for Tissue Engineering
,”
J. Oral Maxillofac. Surg.
,
61
(
4
), pp.
494
506
.10.1053/joms.2003.50096
6.
Beek
,
M.
,
Koolstra
,
J. H.
,
van Ruijven
,
L. J.
, and
van Eijden
,
T. M.
,
2000
, “
Three-Dimensional Finite Element Analysis of the Human Temporomandibular Joint Disc
,”
J. Biomech.
,
33
(
3
), pp.
307
316
.10.1016/S0021-9290(99)00168-2
7.
Donzelli
,
P. S.
,
Gallo
,
L. M.
,
Spilker
,
R. L.
, and
Palla
,
S.
,
2004
, “
Biphasic Finite Element Simulation of the TMJ Disc From In Vivo Kinematic and Geometric Measurements
,”
J. Biomech.
,
37
(
11
), pp.
1787
1791
.10.1016/j.jbiomech.2004.01.029
8.
Tanaka
,
E.
,
del Pozo
,
R.
,
Tanaka
,
M.
,
Asai
,
D.
,
Hirose
,
M.
,
Iwabe
,
T.
, and
Tanne
,
K.
,
2004
, “
Three-Dimensional Finite Element Analysis of Human Temporomandibular Joint With and Without Disc Displacement During Jaw Opening
,”
Med. Eng. Phys.
,
26
(
6
), pp.
503
511
.10.1016/j.medengphy.2004.03.001
9.
Koolstra
,
J. H.
,
2003
, “
Number Crunching With the Human Masticatory System
,”
J. Dent. Res.
,
82
(
9
), pp.
672
676
.10.1177/154405910308200903
10.
Detamore
,
M. S.
, and
Athanasiou
,
K. A.
,
2003
, “
Tensile Properties of the Porcine Temporomandibular Joint Disc
,”
ASME J. Biomech. Eng.
,
125
(
4
), pp.
558
565
.10.1115/1.1589778
11.
Rees
,
L. A.
,
1954
, “
The Structure and Function of the Mandibular Joint
,”
Br. Dent. J.
,
96
(
6
), pp.
125
133
.
12.
Athanasiou
,
K. A.
,
Almarza
,
A. J.
,
Detamore
,
M. S.
, and
Kalpacki
,
K. N.
,
2009
,
Tissue Engineering of Temporomandibular Joint Cartilage
,
Morgan and Claypool
, San Rafael, CA.
13.
Teng
,
S.
,
Xu
,
Y.
,
Cheng
,
M.
, and
Li
,
Y.
,
1991
, “
Biomechanical Properties and Collagen Fiber Orientation of TMJ Discs in Dogs: Part 2. Tensile Mechanical Properties of the Discs
,”
J. Craniomandib. Disord.
,
5
(
2
), pp.
107
114
.
14.
Scapino
,
R. P.
,
Obrez
,
A.
, and
Greising
,
D.
,
2006
, “
Organization and Function of the Collagen Fiber System in the Human Temporomandibular Joint Disk and Its Attachments
,”
Cells Tissues Organs
,
182
(
3–4
), pp.
201
225
.10.1159/000093969
15.
Tanne
,
K.
,
Tanaka
,
E.
, and
Sakuda
,
M.
,
1991
, “
The Elastic Modulus of the Temporomandibular Joint Disc From Adult Dogs
,”
J. Dent. Res.
,
70
(
12
), pp.
1545
1548
.10.1177/00220345910700121401
16.
Beek
,
M.
,
Aarnts
,
M. P.
,
Koolstra
,
J. H.
,
Feilzer
,
A. J.
, and
van Eijden
,
T. M.
,
2001
, “
Dynamic Properties of the Human Temporomandibular Joint Disc
,”
J. Dent. Res.
,
80
(
3
), pp.
876
880
.10.1177/00220345010800030601
17.
Tanaka
,
E.
,
Kawai
,
N.
,
Hanaoka
,
K.
,
Van Eijden
,
T.
,
Sasaki
,
A.
,
Aoyama
,
J.
,
Tanaka
,
M.
, and
Tanne
,
K.
,
2004
, “
Shear Properties of the Temporomandibular Joint Disc in Relation to Compressive and Shear Strain
,”
J. Dent. Res.
,
83
(
6
), pp.
476
479
.10.1177/154405910408300608
18.
Tanaka
,
E.
,
Kikuzaki
,
M.
,
Hanaoka
,
K.
,
Tanaka
,
M.
,
Sasaki
,
A.
,
Kawai
,
N.
,
Ishino
,
Y.
,
Takeuchi
,
M.
, and
Tanne
,
K.
,
2003
, “
Dynamic Compressive Properties of Porcine Temporomandibular Joint Disc
,”
Eur. J. Oral Sci.
,
111
(
5
), pp.
434
439
.10.1034/j.1600-0722.2003.00066.x
19.
Tanaka
,
E.
,
Aoyama
,
J.
,
Tanaka
,
M.
,
Van Eijden
,
T.
,
Sugiyama
,
M.
,
Hanaoka
,
K.
,
Watanabe
,
M.
, and
Tanne
,
K.
,
2003
, “
The Proteoglycan Contents of the Temporomandibular Joint Disc Influence Its Dynamic Viscoelastic Properties
,”
J. Biomed. Mater. Res. Part A
,
65
(
3
), pp.
386
392
.10.1002/jbm.a.10496
20.
Tanaka
,
E.
,
Aoyama
,
J.
,
Tanaka
,
M.
,
Murata
,
H.
,
Hamada
,
T.
, and
Tanne
,
K.
,
2002
, “
Dynamic Properties of Bovine Temporomandibular Joint Disks Change With Age
,”
J. Dent. Res.
,
81
(
9
), pp.
618
622
.10.1177/154405910208100908
21.
Koolstra
,
J. H.
,
Tanaka
,
E.
, and
Van Eijden
,
T. M.
,
2007
, “
Viscoelastic Material Model for the Temporomandibular Joint Disc Derived From Dynamic Shear Tests or Strain–Relaxation Tests
,”
J. Biomech.
,
40
(
10
), pp.
2330
2334
.10.1016/j.jbiomech.2006.10.019
22.
Beatty
,
M. W.
,
Nickel
,
J. C.
,
Iwasaki
,
L. R.
, and
Leiker
,
M.
,
2003
, “
Mechanical Response of the Porcine Temporomandibular Joint Disc to an Impact Event and Repeated Tensile Loading
,”
J. Orofac. Pain
,
17
(
2
), pp.
160
166
.
23.
Snider
,
G. R.
,
Lomakin
,
J.
,
Singh
,
M.
,
Gehrke
,
S. H.
, and
Detamore
,
M. S.
,
2008
, “
Regional Dynamic Tensile Properties of the TMJ Disc
,”
J. Dent. Res.
,
87
(
11
), pp.
1053
1057
.10.1177/154405910808701112
24.
Fernandez
,
P.
,
Rey
,
M. J. L.
, and
Canteli
,
A. F.
,
2011
, “
Viscoelastic Characterisation of the Temporomandibular Joint Disc in Bovines
,”
Strain
,
47
(
2
), pp.
188
193
.10.1111/j.1475-1305.2008.00502.x
25.
Lamela
,
M. J.
,
Fernández
,
P.
,
Ramos
,
A.
,
Fernández-Canteli
,
A.
, and
Tanaka
,
E.
,
2013
, “
Dynamic Compressive Properties of Articular Cartilages in the Porcine Temporomandibular Joint
,”
J. Mech. Behav. Biomed. Mater.
,
23
, pp.
62
70
.10.1016/j.jmbbm.2013.04.006
26.
Tanaka
,
E.
,
Kawai
,
N.
,
Van Eijden
,
T.
,
Watanabe
,
M.
,
Hanaoka
,
K.
,
Nishi
,
M.
,
Iwabe
,
T.
, and
Tanne
,
K.
,
2003
, “
Impulsive Compression Influences the Viscous Behavior of Porcine Temporomandibular Joint Disc
,”
Eur. J. Oral Sci.
,
111
(
4
), pp.
353
358
.10.1034/j.1600-0722.2003.00049.x
27.
Herring
,
S. W.
,
2003
, “
TMJ Anatomy and Animal Models
,”
J. Musculoskeletal and Neuronal Interact.
,
3
(
4
), pp.
391
394
.
28.
Herring
,
S. W.
,
2003
, “
TMJ Anatomy and Animal Models
,”
J. Musculoskeletal and Neuronal Interact.
,
3
(
4
), pp.
406
397
.
29.
Oloyede
,
A.
,
Flachsmann
,
R.
, and
Broom
,
N. D.
,
1992
, “
The Dramatic Influence of Loading Velocity on the Compressive Response of Articular-Cartilage
,”
Connect. Tissue Res.
,
27
(
4
), pp.
211
224
.10.3109/03008209209006997
30.
Tanaka
,
E.
,
Tanaka
,
M.
,
Aoyama
,
J.
,
Watanabe
,
M.
,
Hattori
,
Y.
,
Asai
,
D.
,
Iwabe
,
T.
,
Sasaki
,
A.
,
Sugiyama
,
M.
, and
Tanne
,
K.
,
2002
, “
Viscoelastic Properties and Residual Strain in a Tensile Creep Test on Bovine Temporomandibular Articular Discs
,”
Arch. Oral Biol.
,
47
(
2
), pp.
139
146
.10.1016/S0003-9969(01)00096-6
31.
Chin
,
L. P. Y.
,
Aker
,
F. D.
, and
Zarrinnia
,
K.
,
1996
, “
The Viscoelastic Properties of the Human Temporomandibular Joint Disc
,”
J. Oral Maxillofac. Surg.
,
54
(
3
), pp.
315
318
.10.1016/S0278-2391(96)90751-X
32.
Tanaka
,
E.
,
Hanaoka
,
K.
,
van Eijden
,
T.
,
Tanaka
,
M.
,
Watanabe
,
M.
,
Nishi
,
M.
,
Kawai
,
N.
,
Murata
,
H.
,
Hamada
,
T.
, and
Tanne
,
K.
,
2003
, “
Dynamic Shear Properties of the Temporomandibular Joint Disc
,”
Int. Am. Assoc. Dent.Res.
,
82
, pp.
228
231
.10.1177/154405910308200315
33.
Singh
,
M.
, and
Detamore
,
M. S.
,
2008
, “
Tensile Properties of the Mandibular Condylar Cartilage
,”
ASME J. Biomech. Eng.
,
130
(
1
), p.
011009
.10.1115/1.2838062
34.
Allen
,
K. D.
, and
Athanasiou
,
K. A.
,
2005
, “
A Surface-Regional and Freeze-Thaw Characterization of the Porcine Temporomandibular Joint Disc
,”
Ann. Biomed. Eng.
,
33
(
7
), pp.
951
962
.10.1007/s10439-005-3872-6
35.
Ferry
,
J. D.
,
1980
,
Viscoelastic Properties of Polymers
,
Wiley
,
New York.
36.
Inman
,
D. J.
,
2000
,
Engineering Vibration
,
Prentice-Hall
,
Englewood Cliffs, NJ
.
37.
Klemuk
,
S. A.
, and
Titze
,
I. R.
,
2004
, “
Viscoelastic Properties of Three Vocal-Fold Injectable Biomaterials at Low Audio Frequencies
,”
Laryngoscope
,
114
(
9
), pp.
1597
1603
.10.1097/00005537-200409000-00018
38.
Mavrilas
,
D.
,
Sinouris
,
E. A.
,
Vynios
,
D. H.
, and
Papageorgakopoulou
,
N.
,
2005
, “
Dynamic Mechanical Characteristics of Intact and Structurally Modified Bovine Pericardial Tissues
,”
J. Biomech.
,
38
(
4
), pp.
761
768
.10.1016/j.jbiomech.2004.05.019
39.
Menard
,
K. P.
,
1999
,
Dynamic Mechanical Analysis: A Practical Introduction
,
CRC
,
Boca Raton
.
40.
Meredith
,
N.
,
Alleyne
,
D.
, and
Cawley
,
P.
,
1996
, “
Quantitative Determination of the Stability of the Implant-Tissue Interface Using Resonance Frequency Analysis
,”
Clin. Oral Implants Res.
,
7
(
3
), pp.
261
267
.10.1034/j.1600-0501.1996.070308.x
41.
Wang
,
T. G.
,
Hsiao
,
T. Y.
,
Wang
,
C. L.
, and
Shau
,
Y. W.
,
2007
, “
Resonance Frequency in Patellar Tendon
,”
Scand. J. Med. Sci. Sports
,
17
(
5
), pp.
535
538
.10.1111/j.1600-0838.2006.00618.x
42.
Park
,
S.
, and
Ateshian
,
G. A.
,
2006
, “
Dynamic Response of Immature Bovine Articular Cartilage in Tension and Compression, and Nonlinear Viscoelastic Modeling of the Tensile Response
,”
ASME J. Biomech. Eng.
,
128
(
4
), pp.
623
630
.10.1115/1.2206201
43.
Wyss
,
H. M.
,
Miyazaki
,
K.
,
Mattsson
,
J.
Hu
,
Z. B.
,
Reichman
,
D. R.
, and
Weitz
,
D. A.
,
2007
, “
Strain-Rate Frequency Superposition: A Rheological Probe of Structural Relaxation in Soft Materials
,”
Phys. Rev. Lett.
,
98
(
23
), p.
4
.10.1103/PhysRevLett.98.238303
44.
Koenderink
,
G. H.
,
Atakhorrami
,
M.
,
MacKintosh
,
F. C.
, and
Schmidt
,
C. F.
,
2006
, “
High-Frequency Stress Relaxation in Semiflexible Polymer Solutions and Networks
,”
Phys. Rev. Lett.
,
96
(
13
), p.
138307
.10.1103/PhysRevLett.96.138307
45.
Gardel
,
M. L.
,
Shin
,
J. H.
,
MacKintosh
,
F. C.
,
Mahadevan
,
L.
,
Matsudaira
,
P. A.
, and
Weitz
,
D. A.
,
2004
, “
Scaling of F-Actin Network Rheology to Probe Single Filament Elasticity and Dynamics
,”
Phys. Rev. Lett.
,
93
(
18
), p.
188102
.10.1103/PhysRevLett.93.188102
46.
Hoffman
,
B. D.
,
Massiera
,
G.
, and
Crocker
,
J. C.
,
2005
, “
Forced Unfolding of Protein Domains Determines Cytoskeletal Rheology
,”
Bull. Am. Phys. Soc.
,
1
, p.
31003
.
47.
Kong
,
H. J.
,
Wong
,
E.
, and
Mooney
,
D. J.
,
2003
, “
Independent Control of Rigidity and Toughness of Polymeric Hydrogels
,”
Macromolecules
,
36
(
12
), pp.
4582
4588
.10.1021/ma034137w
48.
Schwartz
,
M. H.
,
Leo
,
P. H.
, and
Lewis
,
J. L.
,
1994
, “
A Microstructural Model for the Elastic Response of Articular-Cartilage
,”
J. Biomech.
,
27
(
7
), pp.
865
873
.10.1016/0021-9290(94)90259-3
49.
Stokes
,
J. R.
, and
Frith
,
W. J.
,
2008
, “
Rheology of Gelling and Yielding Soft Matter Systems
,”
Soft Matter
,
4
(
6
), pp.
1133
1140
.10.1039/b719677f
50.
Mohan
,
P. H.
, and
Bandyopadhyay
,
R.
,
2008
, “
Phase Behavior and Dynamics of a Micelle-Forming Triblock Copolymer System
,”
Phys. Rev. E
,
77
(
4
), p.
7
.10.1103/PhysRevE.77.041803
51.
Tanaka
,
E.
,
Detamore
,
M. S.
, and
Mercuri
,
L. G.
,
2008
, “
Degenerative Disorders of the Temporomandibular Joint: Etiology, Diagnosis, and Treatment
,”
J. Dent. Res.
,
87
(
4
), pp.
296
307
.10.1177/154405910808700406
You do not currently have access to this content.