This study presents a methodology to determine thumb and index finger kinematics while utilizing a minimal set of markers. The motion capture of skin-surface markers presents inherent challenges for the accurate and comprehensive measurement of digit kinematics. As such, it is desirable to utilize robust methods for assessing digit kinematics with fewer markers. The approach presented in this study involved coordinate system alignment, locating joint centers of rotation, and a solution model to estimate three-dimensional (3-D) digit kinematics. The solution model for each digit was based on assumptions of rigid-body interactions, specific degrees of freedom (DOFs) at each located joint, and the aligned coordinate system definitions. Techniques of inverse kinematics and optimization were applied to calculate the 3-D position and orientation of digit segments during pinching between the thumb and index finger. The 3-D joint center locations were reliably fitted with mean coefficients of variation below 5%. A parameterized form of the solution model yielded feasible solutions that met specified tolerance and convergence criteria for over 85% of the test points. The solution results were intuitive to the pinching function. The thumb was measured to be rotated about the CMC joint to bring it into opposition to the index finger and larger rotational excursions (>10 deg) were observed in flexion/extension compared to abduction/adduction and axial rotation for all joints. While the solution model produced results similar to those computed from a full marker set, the model facilitated the usage of fewer markers, which inherently lessened the effects of passive motion error and reduced the post-experimental effort required for marker processing.

References

References
1.
Vigouroux
,
L.
,
Domalain
,
M.
, and
Berton
,
E.
,
2011
, “
Effect of Object Width on Muscle and Joint Forces During Thumb-Index Finger Grasping
,”
J. Appl. Biomech.
,
27
(
3
), pp.
173
180
.
2.
Cerveri
,
P.
,
De Momi
,
E.
,
Lopomo
,
N.
,
Baud-Bovy
,
G.
,
Barros
,
R. M.
, and
Ferrigno
,
G.
,
2007
, “
Finger Kinematic Modeling and Real-Time Hand Motion Estimation
,”
Ann. Biomed. Eng.
,
35
(
11
), pp.
1989
2002
.10.1007/s10439-007-9364-0
3.
Zhang
,
X.
,
Lee
,
S. W.
, and
Braido
,
P.
,
2003
, “
Determining Finger Segmental Centers of Rotation in Flexion-Extension Based on Surface Marker Measurement
,”
J. Biomech.
,
36
(
8
), pp.
1097
1102
.10.1016/S0021-9290(03)00112-X
4.
Ryu
,
J. H.
,
Miyata
,
N.
,
Kouchi
,
M.
,
Mochimaru
,
M.
, and
Lee
,
K. H.
,
2006
, “
Analysis of Skin Movement With Respect to Flexional Bone Motion Using MR Images of a Hand
,”
J. Biomech.
,
39
(
5
), pp.
844
852
.10.1016/j.jbiomech.2005.02.001
5.
Murgia
,
A.
,
Kyberd
,
P. J.
,
Chappell
,
P. H.
, and
Light
,
C. M.
,
2004
, “
Marker Placement to Describe the Wrist Movements During Activities of Daily Living in Cyclical Tasks
,”
Clin. Biomech. (Bristol, Avon)
,
19
(
3
), pp.
248
254
.10.1016/j.clinbiomech.2003.11.012
6.
Metcalf
,
C. D.
, and
Notley
,
S. V.
,
2011
, “
Modified Kinematic Technique for Measuring Pathological Hyperextension and Hypermobility of the Interphalangeal Joints
,”
IEEE Trans. Biomed. Eng.
,
58
(
5
), pp.
1224
1231
.10.1109/TBME.2011.2106126
7.
Shen
,
Z. L.
,
Mondello
,
T. A.
,
Nataraj
,
R.
,
Domalain
,
M.
, and
Li
,
Z.-M.
,
2012
, “
A Digit Alignment Device and Protocol for Kinematic Analysis of the Thumb and Index Finger
,”
Gait and Posture
,
36
(
3
), pp.
643
645
.10.1016/j.gaitpost.2012.04.012
8.
Moerchen
,
V. A.
,
Lazarus
,
J. C.
, and
Gruben
,
K. G.
,
2007
, “
Task-Dependent Organization of Pinch Grip Forces
,”
Exp. Brain Res.
,
180
(
2
), pp.
367
376
.10.1007/s00221-007-0864-9
9.
Mascaro
,
S. A.
and
Asada
,
H.
,
2004
, “
Measurement of Finger Posture and Three-Axis Fingertip Touch Force Using Fingernail Sensors
,”
IEEE Trans. Rob. Autom.
,
20
(
1
), p.
10
.10.1109/TRA.2003.820931
10.
Wu
,
G.
,
van der Helm
,
F. C.
,
Veeger
,
H. E.
,
Makhsous
,
M.
,
Van Roy
,
P.
,
Anglin
,
C.
,
Nagels
,
J.
,
Karduna
,
A. R.
,
McQuade
,
K.
,
Wang
,
X.
,
Werner
,
F. W.
, and
Buchholz
,
B.
,
2005
, “
ISB Recommendation on Definitions of Joint Coordinate Systems of Various Joints for the Reporting of Human Joint Motion—Part II: Shoulder, Elbow, Wrist and Hand
,”
J. Biomech.
,
38
(
5
), pp.
981
992
.10.1016/j.jbiomech.2004.05.042
11.
de Leva
,
P.
,
1996
, “
Adjustments to Zatsiorsky-Seluyanov's Segment Inertia Parameters
,”
J. Biomech.
,
29
(
9
), pp.
1223
1230
.10.1016/0021-9290(95)00178-6
12.
Li
,
Z. M.
and
Tang
,
J.
,
2007
, “
Coordination of Thumb Joints During Opposition
,”
J. Biomech.
,
40
(
3
), pp.
502
510
.10.1016/j.jbiomech.2006.02.019
13.
Silaghi
,
M. C.
,
Plankers
,
R.
,
Boulic
,
R.
,
Fua
,
P.
, and
Thalmann
,
D.
,
1998
, “
Local and Global Skeleton Fitting Techniques for Optical Motion Capture
,”
Lect. Notes Artif. Intell.
,
1537
, pp.
26
40
.
14.
Halvorsen
,
K.
,
Lesser
,
M.
, and
Lundberg
,
A.
,
1999
, “
A New Method for Estimating the Axis of Rotation and the Center of Rotation
,”
J. Biomech.
,
32
(
11
), pp.
1221
1227
.10.1016/S0021-9290(99)00120-7
15.
Craig
,
J. J.
, ed.,
1989
,
Introduction to Robotics
,
Addison-Wesley
,
Reading, MA
.
16.
Cerveri
,
P.
,
Lopomo
,
N.
,
Pedotti
,
A.
, and
Ferrigno
,
G.
,
2005
, “
Derivation of Centers and Axes of Rotation for Wrist and Fingers in a Hand Kinematic Model: Methods and Reliability Results
,”
Ann. Biomed. Eng.
,
33
(
3
), pp.
402
412
.10.1007/s10439-005-1743-9
17.
Gonzalez
,
M. H.
,
Mohan
,
V.
,
Elhassan
,
B.
, and
Amirouche
,
F.
,
2005
, “
Biomechanics of the Digit
,”
J. Am. Soc. Surg. Hand
,
5
(
1
), p.
13
.10.1016/j.jassh.2004.11.009
18.
Hagan
,
M. T.
, and
Menhaj
,
M. B.
,
1994
, “
Training Feedforward Networks With the Marquardt Algorithm
,”
IEEE Trans. Neural Netw.
,
5
(
6
), pp.
989
993
.10.1109/72.329697
19.
Kuo
,
L.-C.
,
Su
,
F.-C.
,
Chiu
,
H.-Y.
, and
Yu
,
C.-Y.
,
2002
, “
Feasibility of Using a Video-Based Motion Analysis System for Measuring Thumb Kinematics
,”
J. Biomech.
,
35
(
11
), pp.
1499
1506
.10.1016/S0021-9290(02)00083-0
20.
Chang
,
L. Y.
, and
Pollard
,
N. S.
,
2007
, “
Constrained Least-Squares Optimization for Robust Estimation of Center of Rotation
,”
J. Biomech.
,
40
(
6
), pp.
1392
1400
.10.1016/j.jbiomech.2006.05.010
21.
Kuo
,
P. H.
, and
Deshpande
,
A. D.
,
2010
, “
Contribution of Passive Properties of Muscle-Tendon Units to the Metacarpophalangeal Joint Torque of the Index Finger
,”
2010 3rd IEEE RAS and EMBS International Conference on Biomedical Robotics and Biomechatronics
, pp.
288
294
.
22.
Degeorges
,
R.
,
Parasie
,
J.
,
Mitton
,
D.
,
Imbert
,
N.
,
Goubier
,
J. N.
, and
Lavaste
,
F.
,
2005
, “
Three-Dimensional Rotations of Human Three-Joint Fingers: An Optoelectronic Measurement. Preliminary Results
,”
Surg. Radiol. Anat.
,
27
(
1
), pp.
43
50
.10.1007/s00276-004-0277-4
23.
Hollister
,
A.
,
Buford
,
W. L.
,
Myers
,
L. M.
,
Giurintano
,
D. J.
, and
Novick
,
A.
,
1992
, “
The Axes of Rotation of the Thumb Carpometacarpal Joint
,”
J. Orthop. Res.
,
10
(
3
), pp.
454
460
.10.1002/jor.1100100319
24.
Delp
,
S. L.
,
Anderson
,
F. C.
,
Arnold
,
A. S.
,
Loan
,
P.
,
Habib
,
A.
,
John
,
C. T.
,
Guendelman
,
E.
, and
Thelen
,
D. G.
,
2007
, “
OpenSim: Open-Source Software to Create and Analyze Dynamic Simulations of Movement
,”
IEEE Trans. Biomed. Eng.
,
54
(
11
), pp.
1940
1950
.10.1109/TBME.2007.901024
25.
Gamage
,
S. S.
, and
Lasenby
,
J.
,
2002
, “
New Least Squares Solutions for Estimating the Average Centre of Rotation and the Axis of Rotation
,”
J. Biomech.
,
35
(
1
), pp.
87
93
.10.1016/S0021-9290(01)00160-9
26.
Li
,
Z. M.
,
Latash
,
M. L.
,
Newell
,
K. M.
, and
Zatsiorsky
,
V. M.
,
1998
, “
Motor Redundancy During Maximal Voluntary Contraction in Four-Finger Tasks
,”
Exp. Brain Res.
,
122
(
1
), pp.
71
78
.10.1007/s002210050492
27.
Mason
,
C. R.
,
Gomez
,
J. E.
, and
Ebner
,
T. J.
,
2001
, “
Hand Synergies During Reach-to-Grasp
,”
J. Neurophysiol.
,
86
(
6
), pp.
2896
2910
.
28.
Crowninshield
,
R. D.
, and
Brand
,
R. A.
,
1981
, “
A Physiologically Based Criterion of Muscle Force Prediction in Locomotion
,”
J. Biomech.
,
14
(
11
), pp.
793
801
.10.1016/0021-9290(81)90035-X
29.
Arimoto
,
S.
,
Sekimoto
,
M.
,
Hashiguchi
,
H.
, and
Ozawa
,
R.
,
2005
, “
Natural Resolution of Ill-Posedness of Inverse Kinematics for Redundant Robots: A Challenge to Bernstein's Degrees-of-Freedom Problem
,”
Adv. Rob.
,
19
(
4
), p.
34
.10.1163/1568553053662555
30.
Li
,
Z.-M.
,
2006
, “
Functional Degrees of Freedom
,”
Motor Control
,
10
(
4
), pp.
301
310
.
31.
Nicolas
,
G.
,
Multon
,
F.
,
Berillon
,
G.
, and
Marchal
,
F.
,
2007
, “
From Bone to Plausible Bipedal Locomotion Using Inverse Kinematics
,”
J. Biomech.
,
40
(
5
), pp.
1048
1057
.10.1016/j.jbiomech.2006.04.010
32.
Wang
,
X.
,
1999
, “
A Behavior-Based Inverse Kinematics Algorithm to Predict Arm Prehension Postures for Computer-Aided Ergonomic Evaluation
,”
J. Biomech.
,
32
(
5
), pp.
453
460
.10.1016/S0021-9290(99)00023-8
33.
Zhao
,
J.
, and
Badler
,
N. I.
,
1994
, “
Inverse Kinematics Positioning Using Nonlinear Programming for Highly Articulated Figures
,”
ACM Trans. Graphics
,
13
(
4
), p.
24
.10.1145/195826.195827
34.
Meredith
,
M. a. M., S.
,
2005
, “
Adapting Motion Capture Data Using Weighted Real-Time Inverse Kinematics
,”
ACM Comp. Entertain.
,
3
(
1
), pp.
1
15
.
35.
Ounpuu
,
S.
,
Gage
,
J. R.
, and
Davis
,
R. B.
,
1991
, “
Three-Dimensional Lower Extremity Joint Kinetics in Normal Pediatric Gait
,”
J. Pediatr. Orthop.
,
11
(
3
), pp.
341
349
.
You do not currently have access to this content.