In scaffold-based tissue engineering, sufficient oxygen and nutrient supply into cells within a scaffold is essential to increase cell viability and the proliferation rate. Generally, oxygen and nutrients reach the cells through the media by diffusion in vitro or in vivo, assuming there is no convection flow through a scaffold with small-sized pores. The scaffold diffusion rate depends mainly on the scaffold pore architecture. Thus, understanding the effect of scaffold pore architecture on the diffusion mechanism is necessary to design an efficient scaffold model. This study proposes a computational method to estimate diffusivity using the finite element analysis (FEA). This method can be applied to evaluate and analyze the effective diffusivity of a freeform fabricated 3D scaffold. The diffusion application module of commercial FEA software was used to calculate the spatial oxygen concentration gradient in a scaffold model medium. The effective diffusivities of each scaffold could be calculated from the oxygen concentration data, which revealed that the scaffold pore architecture influences its effective diffusivity. The proposed method has been verified experimentally and can be applied to design pore architectures with efficient diffusion by increasing our understanding of how the diffusion rate within a scaffold is affected by its pore architecture.

References

References
1.
Hollister
,
S. J.
,
2005
, “
Porous Scaffold Design for Tissue Engineering
,”
Nature Mater.
,
4
(
7
), pp.
518
524
.10.1038/nmat1421
2.
Hutmacher
,
D. W.
,
Sittinger
,
M.
, and
Risbud
,
M. V.
,
2004
, “
Scaffold-Based Tissue Engineering: Rationale for Computer-Aided Design and Solid Free-Form Fabrication Systems
,”
Trends Biotechnol.
,
22
(
7
), pp.
354
362
.10.1016/j.tibtech.2004.05.005
3.
Yang
,
S. F.
,
Leong
,
K. F.
,
Du
,
Z. H.
, and
Chua
,
C. K.
,
2001
, “
The Design of Scaffolds for Use in Tissue Engineering. Part 1. Traditional Factors
,”
Tissue Eng.
,
7
(
6
), pp.
679
689
.10.1089/107632701753337645
4.
Yoo
,
D. J.
,
2011
, “
Computer-Aided Porous Scaffold Design for Tissue Engineering Using Triply Periodic Minimal Surfaces
,”
Int. J. Precis. Eng. Manuf.
,
12
(
1
), pp.
61
71
.10.1007/s12541-011-0008-9
5.
Hollister
,
S. J.
,
2009
, “
Scaffold Design and Manufacturing: From Concept to Clinic
,”
Adv. Mater.
,
21
(
32–33
), pp.
3330
3342
.10.1002/adma.200802977
6.
Malda
,
J.
,
Woodfield
,
T. B.
,
van der Vloodt
,
F.
,
Kooy
,
F. K.
,
Martens
,
D. E.
,
Tramper
,
J.
,
van Blitterswijk
,
C. A.
, and
Riesle
,
J.
,
2004
, “
The Effect of PEGT/PBT Scaffold Architecture on Oxygen Gradients in Tissue Engineered Cartilaginous Constructs
,”
Biomaterials
,
25
(
26
), pp.
5773
5780
.10.1016/j.biomaterials.2004.01.028
7.
Greijer
,
A. E.
, and
van der Wall
,
E.
,
2004
, “
The Role of Hypoxia Inducible Factor 1 (HIF-1) in Hypoxia Induced Apoptosis
,”
J. Clin. Pathol.
,
57
(
10
), pp.
1009
1014
.10.1136/jcp.2003.015032
8.
Nillesen
,
S. T. M.
,
Geutjes
,
P. J.
,
Wismans
,
R.
,
Schalkwijk
,
J.
,
Daamen
,
W. F.
, and
van Kuppevelt
,
T. H.
,
2007
, “
Increased Angiogenesis and Blood Vessel Maturation in Acellular Collagen-Heparin Scaffolds Containing Both FGF2 and VEGF
,”
Biomaterials
,
28
(
6
), pp.
1123
1131
.10.1016/j.biomaterials.2006.10.029
9.
Griffith
,
L. G.
, and
Naughton
,
G.
,
2002
, “
Tissue Engineering–Current Challenges and Expanding Opportunities
,”
Science
,
295
(
5557
), pp.
1009
1014
.10.1126/science.1069210
10.
Kaigler
,
D.
,
Wang
,
Z.
,
Horger
,
K.
,
Mooney
,
D. J.
, and
Krebsbach
,
P. H.
,
2006
, “
VEGF Scaffolds Enhance Angiogenesis and Bone Regeneration in Irradiated Osseous Defects
,”
J Bone Miner. Res.
,
21
(
5
), pp.
735
744
.10.1359/jbmr.060120
11.
Mauck
,
R. L.
,
Hung
,
C. T.
, and
Ateshian
,
G. A.
,
2003
, “
Modeling of Neutral Solute Transport in a Dynamically Loaded Porous Permeable Gel: Implications for Articular Cartilage Biosynthesis and Tissue Engineering
,”
ASME J. Biomech. Eng.
,
125
(
5
), pp.
602
614
.10.1115/1.1611512
12.
Radisic
,
M.
,
Deen
,
W.
,
Langer
,
R.
, and
Vunjak-Novakovic
,
G.
,
2005
, “
Mathematical Model of Oxygen Distribution in Engineered Cardiac Tissue With Parallel Channel Array Perfused With Culture Medium Containing Oxygen Carriers
,”
Am. J. Physiol. Heart Circ. Physiol.
,
288
(
3
), pp.
H1278
H1289
.10.1152/ajpheart.00787.2004
13.
Karande
,
T. S.
,
Ong
,
J. L.
, and
Agrawal
,
C. M.
,
2004
, “
Diffusion in Musculoskeletal Tissue Engineering Scaffolds: Design Issues Related to Porosity, Permeability, Architecture, and Nutrient Mixing
,”
Ann. Biomed. Eng.
,
32
(
12
), pp.
1728
1743
.10.1007/s10439-004-7825-2
14.
Ahn
,
G.
,
Park
,
J. H.
,
Kang
,
T.
,
Lee
,
J. W.
,
Kang
,
H. W.
, and
Cho
,
D. W.
,
2010
, “
Effect of Pore Architecture on Oxygen Diffusion in 3D Scaffolds for Tissue Engineering
,”
ASME J. Biomech. Eng.
,
132
(
10
), p.
104506
.10.1115/1.4002429
15.
Kang
,
H.
,
Lin
,
C. Y.
, and
Hollister
,
S. J.
,
2010
, “
Topology Optimization of Three Dimensional Tissue Engineering Scaffold Architectures for Prescribed Bulk Modulus and Diffusivity
,”
Struct. Multidiscip. Optim.
,
42
(
4
), pp.
633
644
.10.1007/s00158-010-0508-8
16.
Androjna
,
C.
,
Gatica
,
J. E.
,
Belovich
,
J. M.
, and
Derwin
,
K. A.
,
2008
, “
Oxygen Diffusion Through Natural Extracellular Matrices: Implications for Estimating ‘Critical Thickness' Values in Tendon Tissue Engineering
,”
Tissue Eng. Part A
,
14
(
4
), pp.
559
569
.10.1089/tea.2006.0361
17.
Valentin
,
J. E.
,
Freytes
,
D. O.
,
Grasman
,
J. M.
,
Pesyna
,
C.
,
Freund
,
J.
,
Gilbert
,
T. W.
, and
Badylak
,
S. F.
,
2009
, “
Oxygen Diffusivity of Biologic and Synthetic Scaffold Materials for Tissue Engineering
,”
J. Biomed. Mater. Res. A
,
91A
(
4
), pp.
1010
1017
.10.1002/jbm.a.32328
18.
Kang
,
T. Y.
,
Kang
,
H. W.
,
Hwang
,
C. M.
,
Lee
,
S. J.
,
Park
,
J.
,
Yoo
,
J. J.
, and
Cho
,
D. W.
,
2011
, “
The Realistic Prediction of Oxygen Transport in a Tissue-Engineered Scaffold by Introducing Time-Varying Effective Diffusion Coefficients
,”
Acta Biomater.
,
7
(
9
), pp.
3345
3353
.10.1016/j.actbio.2011.05.015
19.
Zhou
,
H.
,
Chen
,
S. B.
,
Peng
,
J. J.
, and
Wang
,
C. H.
,
2010
, “
A Study of Effective Diffusivity in Porous Scaffold by Brownian Dynamics Simulation
,”
J. Colloid Interface Sci.
,
342
(
2
), pp.
620
628
.10.1016/j.jcis.2009.10.079
20.
Mikos
,
A. G.
,
Sarakinos
,
G.
,
Leite
,
S. M.
,
Vacant
,
J. P.
, and
Langer
,
R.
,
1993
, “
Laminated Three-Dimensional Biodegradable Foams for Use in Tissue Engineering
,”
Biomaterials
,
14
(
5
), pp.
323
330
.10.1016/0142-9612(93)90049-8
21.
Groot
,
J. H.
,
Nijenhuis
,
A. J.
,
Bruin
,
P.
,
Pennings
,
A. J.
,
Veth
,
R. P. H.
,
Klompmaker
,
J.
, and
Jansen
,
H. W. B.
,
1990
, “
Use of Porous Biodegradable Polymer Implants in Meniscus Reconstruction. 1) Preparation of Porous Biodegradable Polyurethanes for the Reconstruction of Meniscus Lesions
,”
Colloid Polym. Sci.
,
268
(
12
), pp.
1073
1081
.10.1007/BF01410672
22.
Kang
,
T. Y.
,
Hong
,
J. M.
,
Kim
,
B. J.
,
Cha
,
H. J.
, and
Cho
,
D. W.
,
2012
, “
Enhanced Endothelialization for Developing Artificial Vascular Networks With a Natural Vessel Mimicking the Luminal Surface in Scaffolds
,”
Acta Biomater.
,
9
(
1
), pp.
4716
4725
.10.1016/j.actbio.2012.08.042
23.
Kim
,
H. J.
,
Park
, I
. K.
,
Kim
,
J. H.
,
Cho
,
C. S.
, and
Kim
,
S. M.
,
2012
, “
Gas Foaming Fabrication of Porous Biphasic Calcium Phosphate for Bone Regeneration
,”
Tissue Eng. Regener. Med.
,
9
(
2
), pp.
63
68
.10.1007/s13770-012-0022-8
24.
Chua
,
C. K.
,
Leong
,
K. F.
,
Cheah
,
C. M.
, and
Chua
,
S. W.
,
2003
, “
Development of a Tissue Engineering Scaffold Structure Library for Rapid Prototyping. Part 1: Investigation and Classification
,”
Int. J. Adv. Manuf. Technol.
,
21
(
4
), pp.
291
301
.10.1007/s001700300034
25.
Chua
,
C. K.
,
Leong
,
K. F.
,
Cheah
,
C. M.
, and
Chua
,
S. W.
,
2003
, “
Development of a Tissue Engineering Scaffold Structure Library for Rapid Prototyping. Part 2: Parametric Library and Assembly Program
,”
Int. J. Adv. Manuf. Technol.
,
21
(
4
), pp.
302
312
.10.1007/s001700300035
26.
Park
,
J. H.
,
Jung
,
J. W.
,
Kang
,
H. W.
,
Joo
,
Y. H.
,
Lee
,
J. S.
, and
Cho
,
D. W.
,
2012
, “
Development of a 3D Bellows Tracheal Graft: Mechanical Behavior Analysis, Fabrication and an In Vivo Feasibility Study
,”
Biofabrication
,
4
(
3
), p.
035004
.10.1088/1758-5082/4/3/035004
27.
Kang
,
H. W.
, and
Cho
,
D. W.
,
2012
, “
Development of an Indirect Stereolithography Technology for Scaffold Fabrication With a Wide Range of Biomaterial Selectivity
,”
Tissue Eng.
,
18
(
9
), pp.
719
729
.10.1089/ten.tec.2011.0621
28.
Kang
,
H. W.
,
Park
,
J. H.
,
Kang
,
T. Y.
,
Seol
,
Y. J.
, and
Cho
,
D. W.
,
2012
, “
Unit Cell-Based Computer-Aided Manufacturing System for Tissue Engineering
,”
Biofabrication
,
4
(
1
), p.
015005
.10.1088/1758-5082/4/1/015005
29.
Lee
,
J. S.
,
Cha
,
H. D.
,
Shim
,
J. H.
,
Jung
,
J. W.
,
Kim
,
J. Y.
, and
Cho
,
D. W.
,
2012
, “
Effect of Pore Architecture and Stacking Direction on Mechanical Properties of Solid Freeform Fabrication-Based Scaffold for Bone Tissue Engineering
,”
J. Biomed. Mater. Res. A
,
100
(
7
), pp.
1846
1853
.
30.
Cussler
,
E. L.
,
1984
,
Diffusion, Mass Transfer in Fluid Systems
,
Cambridge University Press
,
New York
.
31.
Peng
,
C. A.
, and
Palsson
,
B. O.
,
1996
, “
Determination of Specific Oxygen Uptake Rates in Human Hematopoietic Cultures and Implications for Bioreactor Design
,”
Ann. Biomed. Eng.
,
24
(
3
), pp.
373
381
.10.1007/BF02660886
32.
Smith
,
W. F.
, and
Hashemi
,
J.
,
2004
,
Foundations of Materials Science and Engineering
,
McGraw-Hill
,
Boston
.
33.
Kreyszig
,
E.
,
1999
,
Advanced Engineering Mathematics
,
Wiley
,
New York
.
34.
Moré
,
J.
,
1978
, “
The Levenberg–Marquardt Algorithm: Implementation and Theory Numerical Analysis
,”
G.
Watson
, ed.,
Springer
,
Berlin–Heidelberg
, pp.
105
116
.
35.
Seol
,
Y. J.
,
Kang
,
T. Y.
, and
Cho
,
D. W.
,
2012
, “
Solid Freeform Fabrication Technology Applied to Tissue Engineering With Various Biomaterials
,”
Soft Matter
,
8
(
6
), pp.
1730
1735
.10.1039/c1sm06863f
36.
Kim
,
J. Y.
,
Yoon
,
J. J.
,
Park
,
E. K.
,
Kim
,
D. S.
,
Kim
,
S. Y.
, and
Cho
,
D. W.
,
2009
, “
Cell Adhesion and Proliferation Evaluation of SFF-Based Biodegradable Scaffolds Fabricated Using a Multi-Head Deposition System
,”
Biofabrication
,
1
(
1
), p.
015002
.10.1088/1758-5082/1/1/015002
37.
Cho
,
Y. H.
,
Lee
, I
. H.
, and
Cho
,
D. W.
,
2005
, “
Laser Scanning Path Generation Considering Photopolymer Solidification in Micro-Stereolithography
,”
Microsyst. Technol.
,
11
(
2–3
), pp.
158
167
.10.1007/s00542-005-0575-8
38.
Jung
,
J. W.
,
Kang
,
H. W.
,
Kang
,
T. Y.
,
Park
,
J. H.
,
Park
,
J.
, and
Cho
,
D. W.
,
2012
, “
Projection Image-Generation Algorithm for Fabrication of a Complex Structure Using Projection-Based Microstereolithography
,”
Int. J. Precis. Eng. Manuf.
,
13
(
3
), pp.
445
449
.10.1007/s12541-012-0057-8
39.
McDonagh
,
C.
,
Maccraith
,
B. D.
, and
McEvoy
,
A. K.
,
1998
, “
Tailoring of Sol-Gel Films for Optical Sensing of Oxygen in Gas and Aqueous Phase
,”
Anal. Chem.
,
70
(
1
), pp.
45
50
.10.1021/ac970461b
40.
Preininger
,
C.
,
Klimant
,
I.
, and
Wolfbeis
,
O. S.
,
1994
, “
Optical Fiber Sensor for Biological Oxygen Demand
,”
Anal. Chem.
,
66
(
11
), pp.
1841
1846
.10.1021/ac00083a011
You do not currently have access to this content.