Synthesis of legged locomotion through dynamic simulation is useful for exploration of the mechanical and control variables that contribute to efficient gait. Most previous simulations have made use of periodicity constraints, a sensible choice for investigations of steady-state walking or running. Sprinting from rest, however, is aperiodic by nature and this aperiodicity is central to the goal of the movement, as performance is determined in large part by a rapid acceleration phase early in the race. The purpose of this study was to create a novel simulation of aperiodic sprinting using a modified spring-loaded inverted pendulum (SLIP) biped model. The optimal control problem was to find the set of controls that minimized the time for the model to run 20 m, and this problem was solved using a direct multiple shooting algorithm that converts the original continuous time problem into piecewise discrete subproblems. The resulting nonlinear programming problem was solved iteratively using a sequential quadratic programming method. The starting point for the optimizer was an initial guess simulation that was a slow alternating-gait “jogging” simulation developed using proportional-derivative feedback to control trunk attitude, swing leg angle, and leg retraction and extension. The optimized aperiodic sprint simulation solution yielded a substantial improvement in locomotion time over the initial guess (2.79 s versus 6.64 s). Following optimization, the model produced forward impulses at the start of the sprint that were four times greater than those of the initial guess simulation, producing more rapid acceleration. Several gait features demonstrated in the optimized sprint simulation correspond to behaviors of human sprinters: forward trunk lean at the start; straightening of the trunk during acceleration; and a dive at the finish. Optimization resulted in reduced foot contact times (0.065 s versus 0.210 s), but contact times early in the optimized simulation were longer to facilitate acceleration. The present study represents the first simulation of multistep aperiodic sprinting with optimal controls. Although the minimized objective function was simple, the model replicated several complex behaviors such as modulation of the foot contact and executing a forward dive at the finish line. None of these observed behaviors were imposed explicitly by constraints but rather were “discovered” by the optimizer. These methods will be extended by addition of musculotendon actuators and joints in order to gain understanding of the influence of musculoskeletal mechanics on gait speed.

References

References
1.
Anderson
,
F. C.
, and
Pandy
,
M. G.
,
2001
, “
Dynamic Optimization of Human Walking
,”
ASME J. Biomech. Eng.
,
123
(
5
), pp.
381
390
.10.1115/1.1392310
2.
Collins
,
S.
,
Ruina
,
A.
,
Tedrake
,
R.
, and
Wisse
,
M.
,
2005
, “
Efficient Bipedal Robots Based on Passive-Dynamic Walkers
,”
Science
,
307
(
5712
), pp.
1082
1085
.10.1126/science.1107799
3.
Hansen
,
A. H.
,
Meier
,
M. R.
,
Sessoms
,
P. H.
, and
Childress
,
D. S.
,
2006
, “
The Effects of Prosthetic Foot Roll-Over Shape Arc Length on the Gait of Trans-Tibial Prosthesis Users
,”
Prosthet. Orthot. Int.
,
30
(
3
), pp.
286
299
.10.1080/03093640600816982
4.
Mochon
,
S.
, and
McMahon
,
T. A.
,
1980
, “
Ballistic Walking
,”
J. Biomech.
,
13
(
1
), pp.
49
57
.10.1016/0021-9290(80)90007-X
5.
McGeer
,
T.
,
1990
, “
Passive Dynamic Walking
,”
Int. J. Robot. Res.
,
9
(
2
), pp.
62
82
.10.1177/027836499000900206
6.
Garcia
,
M.
,
Chatterjee
,
A.
,
Ruina
,
A.
, and
Coleman
,
M.
,
1998
, “
The Simplest Walking Model: Stability, Complexity, and Scaling
,”
ASME J. Biomech. Eng.
,
120
(
2
), pp.
281
288
.10.1115/1.2798313
7.
Alexander
,
R. M. N.
,
1992
, “
A Model of Bipedal Locomotion on Compliant Legs
,”
Phil. Trans. Roy. Soc. Lond. B
,
338
(
1284
), pp.
189
198
.10.1098/rstb.1992.0138
8.
Srinivasan
,
M.
, and
Ruina
,
A.
,
2005
, “
Computer Optimization of a Minimal Biped Model Discovers Walking and Running
,”
Nature
,
439
(
7072
), pp.
72
75
.10.1038/nature04113
9.
Pandy
,
M. G.
,
Zajac
,
F. E.
,
Sim
,
E.
, and
Levine
,
W. S.
,
1990
, “
An Optimal Control Model for Maximum-Height Human Jumping
,”
J. Biomech.
,
23
(
12
), pp.
1185
1198
.10.1016/0021-9290(90)90376-E
10.
Pandy
,
M. G.
,
Garner
,
B. A.
, and
Anderson
,
F. C.
,
1995
, “
Optimal Control of Non-Ballistic Muscular Movements: A Constraint-Based Performance Criterion for Rising From a Chair
,”
ASME J. Biomech. Eng.
,
117
(
1
), pp.
15
26
.10.1115/1.2792265
11.
Albro
,
J. V.
,
Sohl
,
G. A.
,
Bobrow
,
J. E.
, and
Park
,
F. C.
,
2000
, “
On the Computation of Optimal High-Dives
,”
Proc. IEEE Conference on Robotics and Automation
, pp.
3958
3963
.
12.
Cheng
,
H.
,
Yu
,
C.
, and
Cheng
,
K.
,
2009
, “
Computer Simulation of the Optimal Vaulting Motion During the Horse (Table) Contact Phase
,”
ISBS-Conference Proceedings Archive
.
13.
Baumann
,
W.
,
1976
, “
Kinematic and Dynamic Characteristics of the Sprint Start
,”
Biomechanics V
, Vol.
B
, pp.
194
199
.
14.
Hunter
,
J. P.
,
Marshall
,
R. N.
, and
McNair
,
P. J.
,
2005
, “
Relationships Between Ground Reaction Force Impulse and Kinematics of Sprint-Running Acceleration
,”
J. Appl. Biomech.
,
21
(
1
), pp.
31
43
.
15.
Vaughan
,
C. L.
,
1983
, “
Simulation of a Sprinter. Part I. Development of a Model
,”
Int. J. Biomed. Comput.
,
14
(
1
), pp.
65
74
.10.1016/0020-7101(83)90087-9
16.
Ward-Smith
,
A. J.
,
1985
, “
A Mathematical Theory of Running, Based on the First Law of Thermodynamics, and Its Application to the Performance of World-Class Athletes
,”
J. Biomech.
,
18
(
5
), pp.
337
349
.10.1016/0021-9290(85)90289-1
17.
Putnam
,
C.
,
Wood
,
G.
, and
Marshall
,
R.
,
1987
, “
Simulations of the Recovery Action in Sprint Running
,”
Proc. Biomechanics Symposium
, pp.
373
376
.
18.
Thelen
,
D. G.
,
Chumanov
,
E. S.
,
Best
,
T. M.
,
Swanson
,
S. C.
, and
Heiderscheit
,
B. C.
,
2005
, “
Simulation of Biceps Femoris Musculotendon Mechanics During the Swing Phase of Sprinting
,”
Med. Sci. Sport. Exer.
,
37
(
11
), pp.
1931
1938
.10.1249/01.mss.0000176674.42929.de
19.
Lee
,
S. S.
, and
Piazza
,
S. J.
,
2009
, “
Built For Speed: Musculoskeletal Structure and Sprinting Ability
,”
J. Exper. Biol.
,
212
(
22
), pp.
3700
3707
.10.1242/jeb.031096
20.
van den Bogert
,
A. J.
, and
Ackermann
,
M.
,
2009
, “
Effect of a Prosthetic Limb on Sprint Running Performance
,”
XXII Congress of the International Society of Biomechanics
,
Cape Town, South Africa
.
21.
Schultz
,
G.
, and
Mombaur
,
K.
,
2010
, “
Modeling and Optimal Control of Human-Like Running
,”
IEEE/ASME Trans. Mechatron.
,
15
(
5
), pp.
783
792
.10.1109/TMECH.2009.2035112
22.
Abdallah
,
M. E.
, and
Waldron
,
K. J.
,
2008
, “
The Mechanics of Biped Running and a Stable Control Strategy
,”
Robotica
,
27
(
05
), pp.
789
799
.10.1017/S0263574708005134
23.
Raibert
,
M. H.
,
1986
,
Legged Robots that Balance
,
MIT Press
,
Cambridge, MA
.
24.
Marhefka
,
D. W.
, and
Orin
,
D. E.
,
1999
, “
A Compliant Contact Model With Nonlinear Damping for Simulation of Robotic Systems
,”
IEEE Syst. Man Cyber. A
,
29
(
6
), pp.
566
572
.10.1109/3468.798060
25.
Betts
,
J. T.
,
2010
,
Practical Methods for Optimal Control and Estimation Using Nonlinear Programming
,
Society for Industrial and Applied Mathematics
,
Philadelphia
.
26.
Diehl
,
M.
,
Bock
,
H. G.
,
Diedam
,
H.
, and
Wieber
,
P.-B.
,
2006
, “
Fast Direct Multiple Shooting Algorithms for Optimal Robot Control
,”
Fast Motions in Biomechanics and Robotics Optimization and Feedback Control
,
M.
Diehl
, and
K.
Mombaur
, eds.,
Springer Berlin/Heidelberg
, pp.
65
93
.
27.
Shampine
,
L. F.
, and
Gordon
,
M. K.
,
1975
,
Computer Solution of Ordinary Differential Equations: The Initial Value Problem
,
W.H.
Freeman
,
San Francisco
.
28.
Gill
,
P. E.
,
Murray
,
W.
, and
Saunders
,
M. A.
,
2005
, “
SNOPT: An SQP Algorithm for Large-Scale Constrained Optimization
,”
SIAM Review
,
47
(
1
), pp.
99
131
.10.1137/S0036144504446096
29.
Slawinski
,
J.
,
Bonnefoy
,
A.
,
Levêque
J.-M.
,
Ontanon
,
G.
,
Riquet
,
A.
,
Dumas
,
R.
, and
Chèze
,
L.
,
2010
, “
Kinematic and Kinetic Comparisons of Elite and Well-Trained Sprinters During Sprint Start
,”
J. Strength Cond. Res.
,
24
(
4
), pp.
896
905
.10.1519/JSC.0b013e3181ad3448
30.
Mann
,
R.
,
2011
,
The Mechanics of Sprinting and Hurdling
,
CreateSpace
,
S.I.
31.
Hay
,
J. G.
,
1994
,
The Biomechanics of Sports Techniques
,
Prentice-Hall
,
Englewood Cliffs, NJ
.
32.
Seyfarth
,
A.
,
Geyer
,
H.
, and
Herr
,
H.
,
2003
, “
Swing-Leg Retraction: A Simple Control Model for Stable Running
,”
J. Exper. Biol.
,
206
(
15
), pp.
2547
2555
.10.1242/jeb.00463
33.
Rogers
,
J. L.
, and
USA Track & Field
,
2000
,
USA Track & Field Coaching Manual
,
Human Kinetics
,
Champaign, IL
.
34.
Van Soest
,
A. J. K.
, and
Casius
,
L. J. R.
,
2000
, “
Which Factors Determine the Optimal Pedaling Rate in Sprint Cycling?
,”
Med. Sci. Sport. Exer.
,
32
(
11
), pp.
1927
1934
.10.1097/00005768-200011000-00017
35.
Rankin
,
J. W.
, and
Neptune
,
R. R.
,
2008
, “
A Theoretical Analysis of an Optimal Chainring Shape to Maximize Crank Power During Isokinetic Pedaling
,”
J. Biomech.
,
41
(
7
), pp.
1494
1502
.10.1016/j.jbiomech.2008.02.015
36.
Kubo
,
K.
,
Ikebukuro
,
T.
,
Yata
,
H.
,
Tomita
,
M.
, and
Okada
,
M.
,
2011
, “
Morphological and Mechanical Properties of Muscle and Tendon in Highly Trained Sprinters
,”
J. Appl. Biomech.
,
27
(
4
), pp.
336
344
.
37.
Baxter
,
J. R.
,
Novack
,
T. A.
,
Van Werkhoven
,
H.
,
Pennell
,
D. R.
, and
Piazza
,
S. J.
,
2011
, “
Ankle Joint Mechanics and Foot Proportions Differ Between Human Sprinters and Non-sprinters
,”
Proc. Roy. Soc. B
,
279
(
1735
), pp.
2018
2024
.10.1098/rspb.2011.2358
You do not currently have access to this content.