It is known that arteries experience significant axial stretches in vivo. Several authors have shown that the axial force needed to maintain an artery at its in vivo axial stretch does not change with transient cyclical pressurization over normal ranges. However, the axial force phenomenon of arteries has never been explained with microstructural considerations. In this paper we propose a simple biomechanical model to relate the specific axial force phenomenon of arteries to the predicted load-dependent average collagen fiber orientation. It is shown that (a) the model correctly predicts the authors' experimentally measured biaxial behavior of pig renal arteries and (b) the model predictions are in agreement with additional experimental results reported in the literature. Finally, we discuss the implications of the model for collagen fiber orientation and deposition in arteries.

References

References
1.
Hu
,
J. J.
,
Fossum
,
T. W.
,
Miller
,
M. W.
,
Xu
,
H.
,
Liu
,
J. C.
, and
Humphrey
,
J. D.
,
2007
, “
Biomechanics of the Porcine Basilar Artery in Hypertension
,”
Ann. Biomed. Eng.
,
35
(
1
), pp.
19
29
.10.1007/s10439-006-9186-5
2.
Humphrey
,
J. D.
,
Eberth
,
J. F.
,
Dye
,
W. W.
, and
Gleason
,
R. L.
,
2009
, “
Fundamental Role of Axial Stress in Compensatory Adaptations by Arteries
,”
J. Biomech.
,
42
, pp.
1
8
.10.1016/j.jbiomech.2008.11.011
3.
Van Loon
,
P.
,
Klip
,
W.
, and
Bradley
,
E. L.
,
1977
, “
Length–Force and Volume–Pressure Relationships of Arteries
,”
Biorheology
,
14
, pp.
181
201
.
4.
Weizsacker
,
H.
,
Lambert
,
W. H.
, and
Pascale
,
K.
,
1983
, “
Analysis of the Passive Mechanical Properties of Rat Carotid Arteries
,”
J. Biomech.
,
16
, pp.
703
715
.10.1016/0021-9290(83)90080-5
5.
Cardamone
,
L.
,
Valentín
,
A.
,
Eberth
,
J. F.
, and
Humphrey
,
J. D.
,
2009
, “
Origin of Axial Prestretch and Residual Stress in Arteries
,”
Biomech. Model. Mechanobiol.
,
8
(
6
), pp.
431
446
.10.1007/s10237-008-0146-x
6.
Gleason
,
R. L.
,
Wilson
,
E.
, and
Humphrey
,
J. D.
,
2007
, “
Biaxial Biomechanical Adaptations of Mouse Carotid Arteries Cultured at Altered Axial Extension
,”
J. Biomech.
,
38
(
6
), pp.
766
776
.10.1016/j.jbiomech.2006.03.018
7.
Holzapfel
,
G. A.
,
Gasser
,
T. C.
, and
Ogden
,
R. W.
,
2000
, “
A New Constitutive Framework for Arterial Wall Mechanics and a Comparative Study of Material Models
,”
J. Elast.
,
61
, pp.
1
48
.10.1023/A:1010835316564
8.
Humphrey
,
J. D.
, and
Rajagopal
,
K. R.
,
2003
, “
A Constrained Mixture Model for Arterial Adaptations to a Sustained Step Change in Blood Flow
,”
Biomech. Model. Mechanobiol.
,
2
, pp.
109
126
.10.1007/s10237-003-0033-4
9.
Rachev
,
A.
,
2000
, “
A Model of Arterial Adaptation to Alterations in Blood Flow
,”
J. Elast.
,
61
, pp.
83
111
.10.1023/A:1010800703478
10.
Gleason
,
R. L.
, and
Humphrey
,
J. D.
,
2005
, “
Effect of a Sustained Extension on Arterial Growth and Remodeling: A Theoretical Study
,”
J. Biomech.
,
40
(
4
), pp.
1255
1261
.10.1016/j.jbiomech.2004.06.017
11.
Karîsaj
I.
, and
Humphrey
,
J. D.
,
2012
, “
A Multilayered Wall Model of Arterial Growth and Remodeling
,”
Mech. Mater.
,
44
, pp.
110
119
.10.1016/j.mechmat.2011.05.006
12.
Avril
,
S.
,
Badel
,
P.
, and
Duprey
,
A.
,
2010
, “
Anisotropic and Hyperelastic Identification of In Vitro Human Arteries From Full-Field Measurements
,”
J. Biomech.
,
43
, pp.
2978
2985
.10.1016/j.jbiomech.2010.07.004
13.
Brossollet
,
L. J.
, and
Vito
,
R. P.
,
1995
, “
An Alternate Formulation of Blood Vessel Mechanics and the Meaning of the In Vivo Property
,”
J. Biomech.
,
28
, pp.
679
687
.10.1016/0021-9290(94)00119-O
14.
Fung
,
Y. C.
,
1990
,
Biomechanics: Motion, Flow, Stress, and Growth
,
Springer
,
New York
.
15.
Humphrey
,
J. D.
,
2002
,
Cardiovascular Solid Mechanics: Cells, Tissues, and Organs
,
Springer
,
New York
.
16.
Sacks
,
M. S.
,
2000
, “
Biaxial Mechanical Evaluation of Planar Biological Materials
,”
J. Elast.
,
61
, pp.
199
246
.10.1023/A:1010917028671
17.
Van de Geest
,
J.
,
Sacks
,
M. S.
, and
Vorp
,
D.
,
2004
, “
Age Dependency of the Biaxial Biomechanical Behavior of Human Abdominal Aorta
,”
J. Biomech. Eng.
,
126
(
6
), pp.
815
822
.10.1115/1.1824121
18.
Van de Geest
,
J.
,
Sacks
,
M. S.
, and
Vorp
,
D.
,
2006
, “
A Planar Biaxial Constitutive Relation for the Luminal Layer of Intraluminal Thrombus in Abdominal Aortic Aneurysms
,”
J. Biomech.
,
39
(
13
), pp.
2347
2354
.10.1016/j.jbiomech.2006.05.011
19.
McGilvray
,
K.
,
Sarkar
,
C. R.
,
Nguyen
,
K.
, and
Puttlitz
,
C. M.
,
2010
, “
A Biomechanical Analysis of Venous Tissue in Its Normal and Post-Phlebitic Conditions
,”
J. Biomech.
,
43
(
15
), pp.
2941
2947
.10.1016/j.jbiomech.2010.07.012
20.
Valentín
,
A.
,
Cardamone
,
L.
,
Baek
,
S.
, and
Humphrey
,
J. D.
,
2009
, “
Complementary Vasoactivity and Matrix Remodeling in Arterial Adaptations to Altered Flow and Pressure
,”
J. R. Soc. Interface
,
6
, pp.
293
306
.10.1098/rsif.2008.0254
21.
Baek
,
S.
,
Gleason
,
R. L.
,
Rajagopal
,
K. R.
, and
Humphrey
,
J. D.
,
2007
, “
Theory of Small on Large: Potential Utility in Computations of Fluid–Solid Interactions in Arteries
,”
Comput. Methods Appl. Mech. Eng.
,
196
, pp.
3070
3078
.10.1016/j.cma.2006.06.018
22.
Masson
,
I.
,
Boutouyrie
,
P.
,
Laurent
,
S.
,
Humphrey
,
J. D.
, and
Zidi
,
M.
,
2008
, “
Characterization of Arterial Wall Mechanical Behavior and Stresses From Human Clinical Data
,”
J. Biomech.
,
41
, pp.
2618
2627
.10.1016/j.jbiomech.2008.06.022
23.
Badel
,
P.
,
Avril
,
S.
,
Lessner
,
S.
, and
Sutton
,
M.
,
2012
, “
Mechanical Identification of Layer-Specific Properties of Mouse Carotid Arteries Using 3D-DIC and a Hyperelastic Anisotropic Constitutive Model
,”
Comput. Methods Biomech. Biomed. Eng.
,
15
(
1
), pp.
37
48
.10.1080/10255842.2011.586945
24.
Haskett
,
D.
,
Johnson
,
G.
,
Zhou
,
A.
,
Utzinger
,
U.
, and
van de Geest
,
J.
,
2010
, “
Microstructural and Biomechanical Alterations of the Human Aorta As a Function of Age and Location
,”
Biomech. Model. Mechanobiol.
9
, pp.
725
736
.10.1007/s10237-010-0209-7
25.
Holzapfel
,
G. A.
,
2006
, “
Determination of Material Models for Arterial Walls From Uniaxial Extension Tests and Histological Structure
,”
J. Theor. Biol.
,
238
, pp.
290
302
.10.1016/j.jtbi.2005.05.006
26.
Hill, M. R., Duan, X., Gibson, G. A., Watkins, S., and Robertson, A. M.,
2012
, “A Theoretical and Non-Destructive Experimental Approach for Direct Inclusion of Measured Collagen Orientation and Recruitment Into Mechanical Models of the Artery Wall,”
J. Biomech.
, 45(5), pp. 762–771.10.1016/j.jbiomech.2011.11.0
27.
Hariton
,
I.
,
deBotton
,
G.
,
Gasser
,
T. C.
, and
Holzapfel
,
G. A.
,
2007
, “
Stress-Driven Collagen Fiber Remodeling in Arterial Walls
,”
Biomech. Model. Mechanobiol.
,
6
, pp.
163
175
.10.1007/s10237-006-0049-7
28.
Gasser
,
T. C.
,
Ogden
,
R. W.
, and
Holzapfel
,
G. A.
,
2006
, “
Hyperelastic Modelling of Arterial Layers With Distributed Collagen Fibre Orientations
,”
J. R. Soc. Interface
,
3
(
6
), pp.
15
35
.10.1098/rsif.2005.0073
29.
Kim, J. H., Avril, S., Duprey, A., and Favre, J. P.,
2012
, “Experimental Characterization of Rupture in Human Aortic Aneurysms Using a Full-Field Measurement Technique,”
Biomech. Model. Mechanobiol.
, 11(6), pp. 841–854.10.1007/s10237-011-0356-5
You do not currently have access to this content.