It is well-documented that the geometrical dimensions, the longitudinal stretch ratio in situ, certain structural mechanical descriptors such as compliance and pressure-diameter moduli, as well as the mass fractions of structural constituents, vary along the length of the descending aorta. The origins of and possible interrelations among these observed variations remain open questions. The central premise of this study is that having considered the variation of the deformed inner diameter, axial stretch ratio, and area compliance along the aorta to be governed by the systemic requirements for flow distribution and reduction of cardiac preload, the zero-stress state geometry and mass fractions of the basic structural constituents of aortic tissue meet a principle of optimal mechanical operation. The principle manifests as a uniform distribution of the circumferential stress in the aortic wall that ensures effective bearing of the physiological load and a favorable mechanical environment for mechanosensitive vascular smooth muscle cells. A mathematical model is proposed and inverse boundary value problems are solved for the equations that follow from finite elasticity, structure-based constitutive modeling within constrained mixture theory, and stress-induced control of aortic homeostasis, mediated by the synthetic activity of vascular smooth muscle cells. Published experimental data are used to illustrate the predictive power of the proposed model. The results obtained are in agreement with published experimental data and support the proposed principle of optimal mechanical operation for the descending aorta.

References

References
1.
Milnor
,
W. R.
,
1898
,
Hemodynamics
,
2nd ed.
,
Williams and Wilkines
,
London
.
2.
Nichols
,
W. W.
, and
O'Rourke
,
M. F.
,
2005
,
McDonald's Blood Flow in Arteries. Theoretical, Experimental and Clinical Principles
,
5th ed.
,
Oxford Universisty Press
,
New York
.
3.
Fung
,
Y. C.
,
1993
,
Biomechanics: Mechanical Properties of Living Tissues
,
Springer
,
New York
.
4.
Humphrey
,
J. D.
,
2002
,
Cardiovascular Solid Mechanics
,
Springer
,
New York
.
5.
Chuong
,
C. J.
, and
Fung
,
Y. C.
,
1983
, “
Three-Dimensional Stress Distribution in Arteries
,”
ASME J. Biomech. Eng.
,
105
(
3
), pp.
268
274
.10.1115/1.3138417
6.
Fung
,
Y. C.
, and
Liu
,
S. Q.
,
1989
, “
Change of Residual Strains in Arteries Due to Hypertrophy Caused by Aortic Constriction
,”
Circ. Res.
,
65
(
5
), pp.
1340
1349
.10.1161/01.RES.65.5.1340
7.
Han
,
H.-C.
, and
Fung
,
Y. C.
,
1995
, “
Longitudinal Strain of Canine and Porcine Aortas
,”
J. Biomech.
,
28
(
5
), pp.
637
641
.10.1016/0021-9290(94)00091-H
8.
Guo
,
X.
,
Kono
,
Y.
,
Mattrey
,
R.
, and
Kassab
,
G. S.
,
2002
, “
Morphometry and Strain Distribution of the C57bl/6 Mouse Aorta
,”
Am. J. Physiol. Heart Circ. Physiol.
,
283
(
5
), pp.
H1829
H1837
.
9.
Guo
,
X.
, and
Kassab
,
G. S.
,
2003
, “
Variation of Mechanical Properties Along the Length of the Aorta in C57bl/6 Mice
,”
Am. J. Physiol. Heart Circ. Physiol.
,
285
(
6
), pp.
H2614
H2622
.
10.
Huang
,
Y.
,
Guo
,
X.
, and
Kassab
,
G. S.
,
2006
, “
Axial Nonuniformity of Geometric and Mechanical Properties of Mouse Aorta Is Increased During Postnatal Growth
,”
Am. J. Physiol. Heart Circ. Physiol.
,
290
(
2
), pp.
H657
H664
.10.1152/ajpheart.00803.2005
11.
Sokolis
,
D. P.
,
2007
, “
Passive Mechanical Properties and Structure of the Aorta: Segmental Analysis
,”
Acta Physiol.
,
190
(
4
), pp.
277
289
.10.1111/j.1748-1716.2006.01661.x
12.
Fung
,
Y. C.
,
1996
,
Biomechanics: Circulation
,
Springer-Verlag
,
New York
.
13.
Takamizawa
,
K.
, and
Hayashi
,
K.
,
1987
, “
Strain-Energy Density-Function and Uniform Strain Hypothesis for Arterial Mechanics
,”
J. Biomech.
,
20
(
1
), pp.
7
17
.10.1016/0021-9290(87)90262-4
14.
Sobin
,
S. S.
, and
Chen
,
P. C. Y.
,
1997
, “
Vascular Cylindricity in Animals and Plants
,”
Ann. Biomed. Eng.
,
25
(
1
),
S32
.
15.
Rachev
,
A.
,
2003
, “
Remodeling of Arteries in Response to Changes in their Mechanical Environment
,”
Biomechanics of Soft Tissue in Cardiovascular Systems
, CISM Courses and Lectures, Course and Lecture No. 441,
G.
Holzapfel
and
R.
Ogden
, eds.,
Springer
,
New York
, pp.
100
161
.
16.
Humphrey
,
J. D.
, and
Rajagopal
K. R.
,
2003
, “
A Constrained Mixture Model for Arterial Adaptations to a Sustained Step Change in Blood Flow
,”
Biomech. Model. Mechanobiol.
,
2
(
2
),
109
126
.10.1007/s10237-003-0033-4
17.
Gleason
,
R. L.
, and
Humphrey
,
J. D.
,
2004
, “
A Mixture Model of Arterial Growth and Remodeling in Hypertension: Altered Muscle Tone and Tissue Turnover
,”
J. Vasc. Res.
,
41
(
4
), pp.
352
363
.10.1159/000080699
18.
Rucker
,
R. B.
, and
Tinker
,
D.
,
1977
, “
Structure and Metabolism of Arterial Elastin
,”
Int. Rev. Exp. Pathol.
,
17
(
1
), pp.
1
47
.
19.
Gasser
,
T. C.
,
Ogden
,
R. W.
, and
Holzapfel
,
G. A.
,
2006
, “
Hyperelastic Modelling of Arterial Layers With Distributed Collagen Fibre Orientations
,”
J. R. Soc. Interface
,
3
(
6
), pp.
15
35
.10.1098/rsif.2005.0073
20.
Holzapfel
,
G.
,
Gasser
,
T.
, and
Ogden
,
R.
,
2000
, “
A New Constitutive Framework for Arterial Wall Mechanics and a Comparative Study of Material Models
,”
J. Elast.
,
61
(
1
), pp.
1
48
.10.1023/A:1010835316564
21.
Rachev
,
A.
,
Taylor
,
W. R.
, and
Vito
,
R. P.
,
2013
, “
Calculation of the Outcomes of Remodeling of Arteries Subjected to Sustained Hypertension Using a 3D Two-Layered Model
,”
Ann. Biomed. Eng.
(published online).
22.
Humphrey
,
J.
,
2008
, “
Vascular Adaptation and Mechanical Homeostasis at Tissue, Cellular, and Sub-Cellular Levels
,”
Cell Biochem. Biophys.
,
50
(
2
),
53
78
.10.1007/s12013-007-9002-3
23.
Han
,
H. C.
,
2007
, “
A Biomechanical Model of Artery Buckling
,”
J. Biomech.
,
40
, pp.
3672
3678
.10.1016/j.jbiomech.2007.06.018
24.
Rachev
,
A.
,
2009
, “
A Theoretical Study of Mechanical Stability of Arteries
,”
ASME J. Biomech. Eng.
,
131
(
5
), p.
051006
.10.1115/1.3078188
25.
Han
,
H.-C.
,
Chesnutt
,
J. K.
,
Garcia
,
W. J. R.
,
Liu
,
Q.
, and
Wen
,
Q.
,
2012
, “
Artery Buckling: New Phenotypes, Models, and Applications
,”
Ann. Biomed. Eng.
(published online).
26.
Fischer
,
G. M.
, and
Llaurado
J. G.
,
1966
, “
Collagen and Elastin Content in Canine Arteries Selected from Functionally Different Beds
,”
Circ. Res.
,
19
, pp.
394
399
.10.1161/01.RES.19.2.394
27.
Hayter
,
A. J.
,
2002
,
Probability and Statistics
,
Duxbury
,
Pacific Grove, CA
.
28.
Greenwald
,
S. E.
,
Carter
,
A. C.
, and
Berry
,
C. L.
,
1990
, “
Effect of Age on the in Vitro Reflection Coefficient of the Aortoiliac Bifurcation in Humans
,”
Circulation
,
82
(
1
), pp.
114
123
.10.1161/01.CIR.82.1.114
29.
Taylor
,
S. H.
,
1966
, “
Measurement of Cardiac Output in Man
,”
Proc. R. Soc. Med. London
,
59
, pp.
35
53
.
30.
Wolinsky
H.
, and
Glagov
S.
,
1964
, “
Structural Basis for the Static Mechanical Properties of the Aortic Media
,”
Circ. Res.
,
14
, pp.
400
413
.10.1161/01.RES.14.5.400
31.
Schriefl
,
A. J.
,
Wolinski
,
H.
,
Regitnig
,
P.
,
Kohlwein
,
S. D.
, and
Holzapfel
,
G. A.
,
2013
, “
An Automated Approach for Three-Dimensional Quantification of Fibrillar Structures in Optically Cleared Soft Biological Tissues
,”
J. R. Soc., Interface
,
10
(
80
), p.
20120760
.10.1098/rsif.2012.0760
32.
Moriwaki
,
T.
,
Oie
,
T.
,
Takamizawa
,
K.
,
Murayama
,
Y.
,
Fukuda
,
T.
,
Omata
,
S.
,
Kanda
,
K.
, and
Nakayama
,
Y.
,
2011
, “
Variations in Local Elastic Modulus Along the Length of the Aorta as Observed by Use of a Scanning Haptic Microscope (SHM)
,”
J. Artif. Organs
,
14
(
4
), pp.
276
283
.10.1007/s10047-011-0596-2
33.
Rachev
,
A.
, and
Hayashi
K.
,
1999
, “
Theoretical Study of the Effects of Vascular Smooth Muscle Contraction on Strain and Stress Distributions in Arteries
,”
Ann. Biomed. Eng.
,
27
, pp.
459
468
.10.1114/1.191
34.
Fung
,
Y. C.
,
1991
, “
What Are the Residual Stresses Doing in Our Blood Vessels?
,”
Ann. Biomed. Eng.
,
19
(
3
), pp.
237
249
.10.1007/BF02584301
You do not currently have access to this content.