Practically all experimental measurements related to the response of nonlinear bodies that are made within a purely mechanical context are concerned with inhomogeneous deformations, though, in many experiments, much effort is taken to engender homogeneous deformation fields. However, in experiments that are carried out in vivo, one cannot control the nature of the deformation. The quantity of interest is the deformation gradient and/or its invariants. The deformation gradient is estimated by tracking positions of a finite number of markers placed in the body. Any experimental data-reduction procedure based on tracking a finite number of markers will, for a general inhomogeneous deformation, introduce an error in the determination of the deformation gradient, even in the idealized case, when the positions of the markers are measured with no error. In our study, we are interested in a quantitative description of the difference between the true gradient and its estimate obtained by tracking the markers, that is, in the quantitative description of the induced error due to the data reduction. We derive a rigorous upper bound on the error, and we discuss what factors influence the error bound and the actual error itself. Finally, we illustrate the results by studying a practically interesting model problem. We show that different choices of the tracked markers can lead to substantially different estimates of the deformation gradient and its invariants. It is alarming that even qualitative features of the material under consideration, such as the incompressibility of the body, can be evaluated differently with different choices of the tracked markers. We also demonstrate that the derived error estimate can be used as a tool for choosing the appropriate marker set that leads to the deformation gradient estimate with the least guaranteed error.

References

References
1.
Meier
,
G. D.
,
Ziskin
,
M. C.
,
Santamore
,
W. P.
, and
Bove
,
A. A.
,
1980
, “
Kinematics of the Beating Heart
,”
IEEE Trans. Biomed. Eng.
,
BME-27
(
6
), pp.
319
329
.10.1109/TBME.1980.326740
2.
Hoffman
,
A. M.
, and
Grigg
,
P.
,
1984
, “
A Method of Measuring Strains in Soft Tissues
,”
J. Biomech.
,
17
(
10
), pp.
795
800
.10.1016/0021-9290(84)90110-6
3.
Waldman
,
L.
,
Fung
,
Y. C.
, and
Covell
,
J. W.
,
1985
, “
Transmural Myocardial Deformation in the Canine Left Ventricle: Normal In Vivo Three-Dimensional Finite Strains
,”
Circ. Res.
,
57
, pp.
152
163
.10.1161/01.RES.57.1.152
4.
Humphrey
,
J. D.
,
Vawter
,
D. L.
, and
Vito
,
R. P.
,
1987
, “
Quantification of Strains in Biaxially Tested Soft Tissues
,”
J. Biomech.
,
20
(
1
), pp.
59
65
.10.1016/0021-9290(87)90267-3
5.
Arts
,
T.
,
Hunter
,
W. C.
,
Douglas
,
A.
,
Muijtjens
,
A. M. M.
, and
Reneman
,
R. S.
,
1992
, “
Description of a Deformation of the Left Ventricle by a Kinematic Model
,”
J. Biomech.
,
25
(
10
), pp.
1119
1127
.10.1016/0021-9290(92)90068-C
6.
May-Newman
,
K.
, and
Yin
,
F. C.
,
1995
, “
Biaxial Mechanical Behavior of Excised Porcine Mitral Valve Leaflets
,”
Am. J. Physiol.
,
269
(
4
), pp.
H1319
H1327
.
7.
O'Dell
,
W. C.
,
Moore
,
C. C.
,
Hunter
,
W. C.
,
Zerhouni
,
E. A.
, and
McVeigh
,
E. R.
,
1995
, “
Three-Dimensional Myocardial Deformations: Calculation With Displacement Field Fitting to Tagged MR Images
,”
Radiology
,
195
(
3
), pp.
829
835
.
8.
Sacks
,
M. S.
, and
Chuong
,
C. J.
,
1998
, “
Orthotropic Mechanical Properties of Chemically Treated Bovine Pericardium
,”
Ann. Biomed. Eng.
,
26
, pp.
892
902
.10.1114/1.135
9.
Ortt
,
E. M.
,
Doss
,
D. J.
,
Legall
,
E.
,
Wright
,
N. T.
, and
Humphrey
,
J. D.
,
2000
, “
A Device for Evaluating the Multiaxial Finite Strain Thermomechanical Behavior of Elastomers and Soft Tissues
,”
ASME J. Appl. Mech.
,
67
(September), pp.
465
471
.10.1115/1.1311272
10.
Greenleaf
,
J. F.
,
Fatemi
,
M.
, and
Insana
,
M.
,
2003
, “
Selected Methods for Imaging Elastic Properties of Biological Tissues
,”
Annu. Rev. Biomed. Eng.
,
5
, pp.
57
78
.10.1146/annurev.bioeng.5.040202.121623
11.
Chen
,
L.
,
Yin
,
F. C. P.
, and
May-Newman
,
K.
,
2004
, “
The Structure and Mechanical Properties of the Mitral Valve Leaflet-Strut Chordae Transition Zone
,”
ASME J. Biomech. Eng.
,
126
(April), pp.
244
251
.10.1115/1.1695569
12.
Harris
,
J. L.
, and
Humphrey
,
J. D.
,
2004
, “
Kinetics of Thermal Damage to a Collagenous Membrane Under Biaxial Isotonic Loading
,”
IEEE Trans. Biomed. Eng.
,
51
(
2
), pp.
371
379
.10.1109/TBME.2003.820375
13.
Everett
,
W. N.
,
Shih
,
P.
, and
Humphrey
,
J. D.
,
2005
, “
A Bi-plane Video-based System for Studying the Mechanics of Arterial Bifurcations
,”
Exp. Mech.
,
45
(
4
), pp.
377
382
.10.1007/BF02428168
14.
Saravanan
,
U.
,
Baek
,
S.
,
Rajagopal
,
K. R.
, and
Humphrey
,
J. D.
,
2006
, “
On the Deformation of the Circumflex Coronary Artery During Inflation Tests at Constant Length
,”
Exp. Mech.
,
46
, pp.
647
656
.10.1007/s11340-006-9036-2
15.
Genovese
,
K.
,
2009
, “
A Video-Optical System for Time-Resolved Whole-Body Measurement on Vascular Segments
,”
Opt. Lasers Eng.
,
47
(
9
), pp.
995
1008
.10.1016/j.optlaseng.2009.04.017
16.
Kim
,
J.
, and
Baek
,
S.
,
2011
, “
Circumferential Variations of Mechanical Behavior of the Porcine Thoracic Aorta During the Inflation Test
,”
J. Biomech.
,
44
(
10
), pp.
1941
1947
.10.1016/j.jbiomech.2011.04.022
17.
Paranjothi
,
K.
,
Saravanan
,
U.
,
Krishnakumar
,
R.
, and
Balakrishnan
,
K. R.
,
2011
, “
Mechanical Properties of Human Saphenous Vein
,”
Mechanics of Biological Systems and Materials
,
T.
Proulx
, ed., Vol.
2
,
Springer
,
New York
, pp.
79
85
.
18.
Paranjothi
,
K.
,
Saravanan
,
U.
,
Krishnakumar
,
R.
,
Balakrishnan
,
K. R.
, and
Hospitals
,
M.
,
2011
, “
Mechanical Properties of Abnormal Human Aortic and Mitral Valves
,”
Mechanics of Biological Systems and Materials
,
T.
Proulx
, ed., Vol.
2
,
Springer
,
New York
, pp.
65
72
.
19.
McCulloch
,
A. D.
, and
Omens
,
J. H.
,
1991
, “
Non-homogeneous Analysis of Three-Dimensional Transmural Finite Deformations in Canine Ventricular Myocardium
,”
J. Biomech.
,
24
(
7
), pp.
539
548
.10.1016/0021-9290(91)90287-W
20.
Hashima
,
A. R.
,
Young
,
A. A.
,
McCulloch
,
A. D.
, and
Waldman
,
L. K.
,
1993
, “
Nonhomogeneous Analysis of Epicardial Strain Distributions During Acute Myocardial Ischemia in the Dog
,”
J. Biomech.
,
26
(
1
), pp.
19
35
.10.1016/0021-9290(93)90610-Q
21.
Waldman
,
L. K.
,
Allen
,
J. J.
,
Pavelec
,
R. S.
, and
McCulloch
,
A. D.
,
1996
, “
Distributed Mechanics of the Right Ventricle: Effects of Varying Preload
,”
J. Biomech.
,
29
(
3
), pp.
373
381
.10.1016/0021-9290(95)00051-8
22.
Tickner
,
E. G.
, and
Sacks
,
A. H.
,
1967
, “
A Theory for the Static Elastic Behavior of Blood Vessels
,”
Biorheology
,
4
, pp.
151
168
.
23.
Carew
,
T. E.
,
Vaishnav
,
R. N.
, and
Patel
,
D. J.
,
1968
, “
Compressibility of the Arterial Wall
,”
Circ. Res.
,
23
, pp.
61
68
.10.1161/01.RES.23.1.61
24.
Chuong
,
C. J.
, and
Fung
,
Y. C.
,
1984
, “
Compressibility and Constitutive Equation of Arterial Wall in Radial Compression Experiments
,”
J. Biomech.
,
17
(
1
), pp.
35
40
.10.1016/0021-9290(84)90077-0
25.
McLeod
,
R. M.
,
1964
, “
Mean Value Theorems for Vector-Valued Functions
,”
Proc. Edinburgh Math. Soc.
,
14
, pp.
197
209
.10.1017/S0013091500008786
26.
Lang
,
S.
,
1997
,
Undergraduate Analysis
,
2nd
ed., (Undergraduate Texts in Mathematics),
Springer-Verlag
,
New York
.
27.
Evans
,
L. C.
,
1998
,
Partial Differential Equations
, Vol.
19
, (Graduate Studies in Mathematics),
American Mathematical Society
,
Providence, RI
.
28.
Meyer
,
C.
,
2000
,
Matrix Analysis and Applied Linear Algebra
,
Society for Industrial and Applied Mathematics (SIAM)
,
Philadelphia, PA
.
You do not currently have access to this content.