Rupture risk assessment of abdominal aortic aneurysms (AAA) by means of biomechanical analysis is a viable alternative to the traditional clinical practice of using a critical diameter for recommending elective repair. However, an accurate prediction of biomechanical parameters, such as mechanical stress, strain, and shear stress, is possible if the AAA models and boundary conditions are truly patient specific. In this work, we present a complete fluid-structure interaction (FSI) framework for patient-specific AAA passive mechanics assessment that utilizes individualized inflow and outflow boundary conditions. The purpose of the study is two-fold: (1) to develop a novel semiautomated methodology that derives velocity components from phase-contrast magnetic resonance images (PC-MRI) in the infrarenal aorta and successfully apply it as an inflow boundary condition for a patient-specific fully coupled FSI analysis and (2) to apply a one-way–coupled FSI analysis and test its efficiency compared to transient computational solid stress and fully coupled FSI analyses for the estimation of AAA biomechanical parameters. For a fully coupled FSI simulation, our results indicate that an inlet velocity profile modeled with three patient-specific velocity components and a velocity profile modeled with only the axial velocity component yield nearly identical maximum principal stress (σ1), maximum principal strain (ε1), and wall shear stress (WSS) distributions. An inlet Womersley velocity profile leads to a 5% difference in peak σ1, 3% in peak ε1, and 14% in peak WSS compared to the three-component inlet velocity profile in the fully coupled FSI analysis. The peak wall stress and strain were found to be in phase with the systolic inlet flow rate, therefore indicating the necessity to capture the patient-specific hemodynamics by means of FSI modeling. The proposed one-way–coupled FSI approach showed potential for reasonably accurate biomechanical assessment with less computational effort, leading to differences in peak σ1, ε1, and WSS of 14%, 4%, and 18%, respectively, compared to the axial component inlet velocity profile in the fully coupled FSI analysis. The transient computational solid stress approach yielded significantly higher differences in these parameters and is not recommended for accurate assessment of AAA wall passive mechanics. This work demonstrates the influence of the flow dynamics resulting from patient-specific inflow boundary conditions on AAA biomechanical assessment and describes methods to evaluate it through fully coupled and one-way–coupled fluid-structure interaction analysis.
Skip Nav Destination
Article navigation
August 2013
Research-Article
Fluid-Structure Interaction Modeling of Abdominal Aortic Aneurysms: The Impact of Patient-Specific Inflow Conditions and Fluid/Solid Coupling
Santanu Chandra,
Santanu Chandra
Department of Aerospace and Mechanical Engineering,
e-mail: santanu.chandra@gmail.com
University of Notre Dame
,Notre Dame, IN 46556
e-mail: santanu.chandra@gmail.com
Search for other works by this author on:
Samarth S. Raut,
Samarth S. Raut
Department of Mechanical Engineering,
e-mail: sraut@andrew.cmu.edu
Carnegie Mellon University
,Pittsburgh, PA 15213
e-mail: sraut@andrew.cmu.edu
Search for other works by this author on:
Robert W. Biederman,
Mark Doyle,
Mark Doyle
e-mail: mdoyle@wpahs.org
Allegheny General Hospital,
Cardiovascular Magnetic Resonance Imaging
,Allegheny General Hospital,
Pittsburgh, PA 15212
Search for other works by this author on:
Satish C. Muluk,
Satish C. Muluk
Division of Vascular Surgery,
Western Pennsylvania Allegheny Health Systems,
e-mail: muluk@usa.net
Western Pennsylvania Allegheny Health Systems,
Pittsburgh, PA 15212
e-mail: muluk@usa.net
Search for other works by this author on:
Ender A. Finol
Ender A. Finol
1
Department of Biomedical Engineering,
AET 1.360,
One UTSA Circle,
e-mail: ender.finol@utsa.edu
AET 1.360,
The University of Texas at San Antonio
,One UTSA Circle,
San Antonio, TX 78249
e-mail: ender.finol@utsa.edu
1Corresponding author.
Search for other works by this author on:
Santanu Chandra
Department of Aerospace and Mechanical Engineering,
e-mail: santanu.chandra@gmail.com
University of Notre Dame
,Notre Dame, IN 46556
e-mail: santanu.chandra@gmail.com
Samarth S. Raut
Department of Mechanical Engineering,
e-mail: sraut@andrew.cmu.edu
Carnegie Mellon University
,Pittsburgh, PA 15213
e-mail: sraut@andrew.cmu.edu
Anirban Jana
Robert W. Biederman
e-mail: rbiederm@wpahs.org
Mark Doyle
e-mail: mdoyle@wpahs.org
Allegheny General Hospital,
Cardiovascular Magnetic Resonance Imaging
,Allegheny General Hospital,
Pittsburgh, PA 15212
Satish C. Muluk
Division of Vascular Surgery,
Western Pennsylvania Allegheny Health Systems,
e-mail: muluk@usa.net
Western Pennsylvania Allegheny Health Systems,
Pittsburgh, PA 15212
e-mail: muluk@usa.net
Ender A. Finol
Department of Biomedical Engineering,
AET 1.360,
One UTSA Circle,
e-mail: ender.finol@utsa.edu
AET 1.360,
The University of Texas at San Antonio
,One UTSA Circle,
San Antonio, TX 78249
e-mail: ender.finol@utsa.edu
1Corresponding author.
Contributed by the Bioengineering Division of ASME for publication in the JOURNAL OF BIOMECHANICAL ENGINEERING. Manuscript received April 10, 2012; final manuscript received March 22, 2013; accepted manuscript posted April 22, 2013; published online June 12, 2013. Assoc. Editor: Naomi Chesler.
J Biomech Eng. Aug 2013, 135(8): 081001 (14 pages)
Published Online: June 12, 2013
Article history
Received:
April 10, 2012
Revision Received:
March 22, 2013
Accepted:
April 22, 2013
Citation
Chandra, S., Raut, S. S., Jana, A., Biederman, R. W., Doyle, M., Muluk, S. C., and Finol, E. A. (June 12, 2013). "Fluid-Structure Interaction Modeling of Abdominal Aortic Aneurysms: The Impact of Patient-Specific Inflow Conditions and Fluid/Solid Coupling." ASME. J Biomech Eng. August 2013; 135(8): 081001. https://doi.org/10.1115/1.4024275
Download citation file:
Get Email Alerts
Effect of Internal Mechanical Environment of Porous Scaffolds on Mechano-driven Bone Ingrowth: A Numerical Study
J Biomech Eng (September 2023)
In Silico Mechanical Effort Analysis of the All-On-4 Design Performed With Platform-Switching Distal Short Dental Implants
J Biomech Eng (September 2023)
Related Articles
Design, Development, and Temporal Evaluation of a Magnetic Resonance Imaging-Compatible In Vitro Circulation Model Using a Compliant Abdominal Aortic Aneurysm Phantom
J Biomech Eng (May,2021)
Computational Fluid–Structure Interactions in the Human Cerebrovascular System: Part 1—A Review of the Current Understanding of Cerebrovascular Biomechanics
ASME J of Medical Diagnostics (August,2022)
Porohyperelastic Finite Element Modeling of Abdominal Aortic Aneurysms
J Biomech Eng (October,2010)
Related Proceedings Papers
Related Chapters
Fuzzy Neural Networks for Diagnosis of Malignant Mesothelioma
Intelligent Engineering Systems Through Artificial Neural Networks, Volume 17
Acoustic Noise in MRI Scanners
Biomedical Applications of Vibration and Acoustics in Therapy, Bioeffect and Modeling
Vibration in MRI Scanners
Biomedical Applications of Vibration and Acoustics in Therapy, Bioeffect and Modeling