Engineered tissues are commonly stretched or compressed (i.e., conditioned) during culture to stimulate extracellular matrix (ECM) production and to improve the mechanical properties of the growing construct. The relationships between mechanical stimulation and ECM remodeling, however, are complex, interdependent, and dynamic. Thus, theoretical models are required for understanding the underlying phenomena so that the conditioning process can be optimized to produce functional engineered tissues. Here, we continue our development of multiscale mechanical models by simulating the effect of cell tractions on developing isometric tension and redistributing forces in the surrounding fibers of a collagen gel embedded with explants. The model predicted patterns of fiber reorganization that were similar to those observed experimentally. Furthermore, the inclusion of cell compaction also changed the distribution of fiber strains in the gel compared to the acellular case, particularly in the regions around the cells where the highest strains were found.

References

References
1.
Marinković
,
A.
,
Mih
,
J. D.
,
Park
,
J. A.
,
Liu
,
F.
, and
Tschumperlin
,
D. J.
,
2012
, “
Improved Throughput Traction Microscopy Reveals Pivotal Role for Matrix Stiffness in Fibroblast Contractility and TGF-β Responsiveness
,”
Am. J. Physiol. Lung Cell. Mol. Physiol.
,
303
(
3
), pp.
169
180
.10.1152/ajplung.00108.2012
2.
Sieminski
,
A.
,
Hebbel
,
R.
, and
Gooch
,
K.
,
2004
, “
The Relative Magnitudes of Endothelial Force Generation and Matrix Stiffness Modulate Capillary Morphogenesis In Vitro
,”
Expt. Cell Res.
,
297
(
2
), pp.
574
584
.10.1016/j.yexcr.2004.03.035
3.
Engler
,
A. J.
,
Sen
,
S.
,
Sweeney
,
H. L.
, and
Discher
,
D. E.
,
2006
, “
Matrix Elasticity Directs Stem Cell Lineage Specification
,”
Cell
,
126
(
4
), pp.
677
689
.10.1016/j.cell.2006.06.044
4.
Discher
,
D. E.
,
Janmey
,
P.
,
Wang
,
Y.
,
2005
, “
Tissue Cells Feel and Respond to the Stiffness of Their Substrate
,”
Science
,
310
(
5751
), pp.
1139
1143
.10.1126/science.1116995
5.
Wells
,
R. G.
,
2005
, “
The Role of Matrix Stiffness in Hepatic Stellate Cell Activation and Liver Fibrosis
,”
J. Clin. Gastroenterol.
,
39
(
4
), pp.
S158
S161
.10.1097/01.mcg.0000155516.02468.0f
6.
Schwartz
,
M. A.
, and
DeSimone
,
D. W.
,
2008
, “
Cell Adhesion Receptors in Mechanotransduction
,”
Curr. Opin. Cell Biol.
,
20
(
5
), pp.
551
556
.10.1016/j.ceb.2008.05.005
7.
Wozniak
,
M. A.
,
Modzelewska
,
K.
,
Kwong
,
L.
, and
Keely
,
P. J.
,
2004
, “
Focal Adhesion Regulation of Cell Behavior
,”
Biochim. Biophys. Acta Mol. Cell Res.
,
1692
(
2
), pp.
103
119
.10.1016/j.bbamcr.2004.04.007
8.
Genin
,
G. M.
,
Abney
,
T. M.
,
Wakatsuki
,
T.
, and
Elson
,
E. L.
,
2011
, “
Cell-Cell Interactions and the Mechanics of Cells and Tissues Observed in Bioartificial Tissue Constructs
,”
Mechanobiology of Cell-Cell and Cell-Matrix Interactions
,
Springer
,
New York
, pp.
75
103
.
9.
Peacock
,
M.
,
Turner
,
C. H.
,
Econs
,
M. J.
, and
Foroud
,
T.
,
2002
, “
Genetics of Osteoporosis
,”
Endocrine Rev.
,
23
(
3
), pp.
303
326
.10.1210/er.23.3.303
10.
Rubin
,
C. T.
, and
Lanyon
,
L. E.
,
2005
, “
Osteoregulatory Nature of Mechanical Stimuli: Function as a Determinant for Adaptive Remodeling in Bone
,”
J. Orthop. Res.
,
5
(
2
), pp.
300
310
.10.1002/jor.1100050217
11.
Burgoyne
,
C. F.
,
Crawford Downs
,
J.
,
Bellezza
,
A. J.
,
Francis Suh
,
J. K.
, and
Hart
,
R. T.
,
2005
, “
The Optic Nerve Head as a Biomechanical Structure: A New Paradigm for Understanding the Role of IOP-Related Stress and Strain in the Pathophysiology of Glaucomatous Optic Nerve Head Damage
,”
Prog. Retin Eye Res.
,
24
(
1
), pp.
39
73
.10.1016/j.preteyeres.2004.06.001
12.
Sander
,
E.
,
Downs
,
J.
,
Hart
,
R.
,
Burgoyne
,
C.
, and
Nauman
,
E.
,
2006
, “
A Cellular Solid Model of the Lamina Cribrosa: Mechanical Dependence on Morphology
,”
ASME, J. Biomech. Eng.
,
128
, p.
879
.10.1115/1.2354199
13.
Moore
,
J. E.
,
Xu
,
C.
,
Glagov
,
S.
,
Zarins
,
C. K.
, and
Ku
,
D. N.
,
1994
, “
Fluid Wall Shear Stress Measurements in a Model of the Human Abdominal Aorta: Oscillatory Behavior and Relationship to Atherosclerosis
,”
Atherosclerosis
,
110
(
2
), pp.
225
240
.10.1016/0021-9150(94)90207-0
14.
Nerem
,
R.
,
1992
, “
Vascular Fluid Mechanics, The Arterial Wall, and Atherosclerosis
,”
ASME, J. Biomech. Eng.
,
114
(
3
), p.
274
.10.1115/1.2891384
15.
Gao
,
L.
,
Hoi
,
Y.
,
Swartz
,
D. D.
,
Kolega
,
J.
,
Siddiqui
,
A.
, and
Meng
,
H.
,
2008
, “
Nascent Aneurysm Formation at the Basilar Terminus Induced by Hemodynamics
,”
Stroke
,
39
(
7
), pp.
2085
2090
.10.1161/STROKEAHA.107.509422
16.
Paszek
,
M. J.
,
Zahir
,
N.
,
Johnson
,
K. R.
,
Lakins
,
J. N.
,
Rozenberg
,
G. I.
,
Gefen
,
A.
, Reinhart-King, C. A., Margulies, S. S., Dembo, M., Boettiger, D., Hammer, D. A., and Weaver, V. M.,
2005
, “
Tensional Homeostasis and the Malignant Phenotype
,”
Cancer Cell
,
8
(
3
), pp.
241
254
.10.1016/j.ccr.2005.08.010
17.
Huang
,
S.
, and
Ingber
,
D. E.
,
2005
, “
Cell Tension, Matrix Mechanics, and Cancer Development
,”
Cancer Cell
,
8
(
3
), pp.
175
176
.10.1016/j.ccr.2005.08.009
18.
Pathak
,
A.
, and
Kumar
,
S.
,
2012
, “
Independent Regulation of Tumor Cell Migration by Matrix Stiffness and Confinement
,”
Proc. Natl. Acad. Sci.
,
109
(
26
), pp.
10334
10339
.10.1073/pnas.1118073109
19.
Balestrini
,
J. L.
, and
Billiar
,
K. L.
,
2009
, “
Magnitude and Duration of Stretch Modulate Fibroblast Remodeling
,”
ASME, J. Biomech. Eng.
,
131
, p.
051005
.10.1115/1.3049527
20.
Rubbens
,
M. P.
,
Driessen-Mol
,
A.
,
Boerboom
,
R. A.
,
Koppert
,
M. M. J.
,
Van Assen
,
H. C.
,
TerHaar Romeny
,
B. M.
, Baaijens, F. P. T., and Bouten, C. V. C.,
2009
, “
Quantification of the Temporal Evolution of Collagen Orientation in Mechanically Conditioned Engineered Cardiovascular Tissues
,”
Ann. Biomed. Eng.
,
37
(
7
), pp.
1263
1272
.10.1007/s10439-009-9698-x
21.
Seliktar
,
D.
,
Black
,
R. A.
,
Vito
,
R. P.
, and
Nerem
,
R. M.
,
2000
, “
Dynamic Mechanical Conditioning of Collagen-Gel Blood Vessel Constructs Induces Remodeling In Vitro
,”
Ann. Biomed. Eng.
,
28
(
4
), pp.
351
362
.10.1114/1.275
22.
Juncosa-Melvin
,
N.
,
Matlin
,
K. S.
,
Holdcraft
,
R. W.
,
Nirmalanandhan
, V
. S.
,
Butler
,
D. L.
,
2007
, “
Mechanical Stimulation Increases Collagen Type I and Collagen Type III Gene Expression of Stem Cell-Collagen Sponge Constructs For Patellar Tendon Repair
,”
Tissue Eng.
,
13
(
6
), pp.
1219
1226
.10.1089/ten.2006.0339
23.
Brown
,
R.
,
Prajapati
,
R.
,
McGrouther
,
D.
,
Yannas
, I
.
, and
Eastwood
,
M.
,
1998
, “
Tensional Homeostasis in Dermal Fibroblasts: Mechanical Responses to Mechanical Loading in Three-Dimensional Substrates
,”
J. Cell Physiol.
,
175
(
3
), pp.
323
332
.10.1002/(SICI)1097-4652(199806)175:3<323::AID-JCP10>3.0.CO;2-6
24.
Syedain
,
Z. H.
,
Weinberg
,
J. S.
, and
Tranquillo
,
R. T.
,
2008
, “
Cyclic Distension of Fibrin-Based Tissue Constructs: Evidence of Adaptation During Growth of Engineered Connective Tissue
,”
Proc. Natl. Acad. Sci.
,
105
(
18
), p.
6537
.10.1073/pnas.0711217105
25.
Breuls
,
R.
,
Sengers
,
B. G.
,
Oomens
,
C.
,
Bouten
,
C.
, and
Baaijens
,
F.
,
2002
, “
Predicting Local Cell Deformations in Engineered Tissue Constructs: A Multilevel Finite Element Approach
,”
ASME, J. Biomech. Eng.
,
124
(
2
), p.
198
.10.1115/1.1449492
26.
Guilak
,
F.
, and
Mow
, V
. C.
,
2000
, “
The Mechanical Environment of the Chondrocyte: A Biphasic Finite Element Model of Cell–Matrix Interactions in Articular Cartilage
,”
J. Biomech.
,
33
(
12
), pp.
1663
1673
.10.1016/S0021-9290(00)00105-6
27.
Stops
,
A.
,
McMahon
,
L.
,
O'Mahoney
,
D.
,
Prendergast
,
P.
, and
McHugh
,
P.
,
2008
, “
A Finite Element Prediction of Strain on Cells in a Highly Porous Collagen-Glycosaminoglycan Scaffold
,”
ASME, J. Biomech. Eng.
,
130
, p.
061001
.10.1115/1.2979873
28.
Barocas
, V
. H.
, and
Tranquillo
,
R. T.
,
1997
, “
An Anisotropic Biphasic Theory of Tissue-Equivalent Mechanics: The Interplay Among Cell Traction, Fibrillar Network Deformation, Fibril Alignment, and Cell Contact Guidance
,”
J. Biomech. Eng.
,
119
, p.
137
.10.1115/1.2796072
29.
Susilo
,
M. E.
,
Bell
,
B. J.
,
Roeder
,
B. A.
,
Voytik-Harbin
,
S. L.
,
Kokini
,
K.
,
Nauman
,
E. A.
,
2012
, “
Prediction of Equibiaxial Loading Stress in Collagen-Based Extracellular Matrix Using a Three-Dimensional Unit Cell Model
,”
Acta Biomater.
,
9
, pp.
5544
5553
.10.1016/j.actbio.2012.10.028
30.
Corin
,
K. A.
, and
Gibson
,
L. J.
,
2010
, “
Cell Contraction Forces in Scaffolds With Varying Pore Size and Cell Density
,”
Biomaterials
,
31
(
18
), pp.
4835
4845
.10.1016/j.biomaterials.2010.01.149
31.
Wakatsuki
,
T.
,
Kolodney
,
M. S.
,
Zahalak
,
G. I.
, and
Elson
,
E. L.
,
2000
, “
Cell Mechanics Studied by a Reconstituted Model Tissue
,”
Biophys. J.
,
79
(
5
), pp.
2353
2368
.10.1016/S0006-3495(00)76481-2
32.
Chandran
,
P. L.
, and
Barocas
, V
. H.
,
2007
, “
Deterministic Material-Based Averaging Theory Model of Collagen Gel Micromechanics
,”
ASME, J. Biomech. Eng.
,
129
, p.
137
.10.1115/1.2472369
33.
Stylianopoulos
,
T.
, and
Barocas
, V
. H.
,
2007
, “
Volume-Averaging Theory for the Study of the Mechanics of Collagen Networks
,”
Comput. Methods Appl. Mech. Eng.
,
196
(
31–32
), pp.
2981
2990
.10.1016/j.cma.2006.06.019
34.
Sander
,
E. A.
,
Stylianopoulos
,
T.
,
Tranquillo
,
R. T.
, and
Barocas
, V
. H.
,
2009
, “
Image-Based Biomechanics of Collagen-Based Tissue Equivalents
,”
Eng. Med. Biol. Mag. IEEE
,
28
(
3
), pp.
10
18
.10.1109/MEMB.2009.932486
35.
Hadi
,
M.
,
Sander
,
E.
,
Ruberti
,
J.
, and
Barocas
, V
.
,
2011
, “
Simulated Remodeling of Loaded Collagen Networks Via Strain-Dependent Enzymatic Degradation and Constant-Rate Fiber Growth
,”
Mech. Mater.
,
44
, pp.
72
82
.10.1016/j.mechmat.2011.07.003
36.
Chandran
,
P. L.
, and
Barocas
, V
. H.
,
2006
, “
Affine Versus Non-Affine Fibril Kinematics in Collagen Networks: Theoretical Studies of Network Behavior
,”
J. Biomech. Eng.
,
128
, p.
259
.10.1115/1.2165699
37.
Stylianopoulos
,
T.
,
Bashur
,
C. A.
,
Goldstein
,
A. S.
,
Guelcher
,
S. A.
, and
Barocas
, V
. H.
,
2008
, “
Computational Predictions of the Tensile Properties of Electrospun Fibre Meshes: Effect of Fibre Diameter and Fibre Orientation
,”
J. Mech. Beh. Biomed. Mater.
,
1
(
4
), pp.
326
335
.10.1016/j.jmbbm.2008.01.003
38.
Stylianopoulos
,
T.
, and
Barocas
, V
. H.
,
2007
, “
Multiscale, Structure-Based Modeling for the Elastic Mechanical Behavior of Arterial Walls
,”
ASME, J. Biomech. Eng.
,
129
, p.
611
.10.1115/1.2746387
39.
Nemat-Nasser
,
S.
, and
Hori
,
M.
,
1999
,
Micromechanics: Overall Properties of Heterogeneous Materials
,
Elsevier
,
Amsterdam
.
40.
Drew
,
D. A.
,
1971
, “
Averaged Field Equations For Two-Phase Media
,”
StudApplMath
,
50
(
2
), pp.
133
166
.
41.
Sander
,
E.
, and
Barocas
, V
.
,
2009
, “
Comparison of 2D Fiber Network Orientation Measurement Methods
,”
J. Biomed. Mater. Res., Part A
,
88
(
2
), pp.
322
331
.10.1002/jbm.a.31847
42.
Sander
,
E.
,
Barocas
,
V.
, and
Fratzl
,
P.
,
2008
,
Biomimetic Collagen Tissues: Collagenous Tissue Engineering and Other Applications
,
Springer
,
New York
.
43.
Stopak
,
D.
, and
Harris
,
A. K.
,
1982
, “
Connective Tissue Morphogenesis by Fibroblast Traction: I. Tissue Culture Observations
,”
Dev. Biol.
,
90
(
2
), pp.
383
398
.10.1016/0012-1606(82)90388-8
44.
Sawhney
,
R. K.
, and
Howard
,
J.
,
2002
, “
Slow Local Movements of Collagen Fibers by Fibroblasts Drive the Rapid Global Self-Organization of Collagen Gels
,”
J. Cell Biol.
,
157
(
6
), pp.
1083
1092
.10.1083/jcb.200203069
45.
Provenzano
,
P. P.
,
Inman
,
D. R.
,
Eliceiri
,
K. W.
,
Trier
,
S. M.
, and
Keely
,
P. J.
,
2008
, “
Contact Guidance Mediated Three-Dimensional Cell Migration is Regulated by Rho/ROCK-Dependent Matrix Reorganization
,”
Biophys. J.
,
95
(
11
), pp.
5374
.10.1529/biophysj.108.133116
46.
Chang Yan
,
K.
,
Nair
,
K.
, and
Sun
,
W.
,
2010
, “
Three Dimensional Multi-Scale Modelling and Analysis of Cell Damage in Cell-Encapsulated Alginate Constructs
,”
J. Biomech.
,
43
(
6
), pp.
1031
1038
.10.1016/j.jbiomech.2009.12.018
47.
Sander
,
E.
,
Stein
,
A.
,
Swickrath
,
M.
, and
Barocas
, V
.
,
2010
, “
Out of Many, One: Modeling Schemes for Biopolymer and Biofibril Networks
,”
Trends in Computational Nanomechanics
,
9
, pp.
557
602
.10.1007/978-1-4020-9785-0
48.
Janmey
,
P. A.
,
Euteneuer
,
U.
,
Traub
,
P.
, and
Schliwa
,
M.
,
1991
, “
Viscoelastic Properties of Vimentin Compared With Other Filamentous Biopolymer Networks
,”
J. Cell Biol.
,
113
(
1
), pp.
155
160
.10.1083/jcb.113.1.155
49.
Reinhardt
,
J. W.
,
Krakauer
,
D. A.
, and
Gooch
,
K. J.
,
2013
, “
Complex Matrix Remodeling and Durotaxis Can Emerge From Simple Rules for Cell-Matrix Interaction in Agent-Based Models
,”
ASME, J. Biomech. Eng.
,
135
(7), p.
071003
. 10.1115/1.4024463
50.
Zielinski
,
R.
,
Mihai
,
C.
,
Kniss
,
D.
, and
Ghadiali
,
S. N.
,
2013
, “
Finite Element Analysis of Traction Force Microscopy: Influence of Cell Mechanics, Adhesion and Morphology
,”
ASME, J. Biomech. Eng.
,
135
(7), p.
071009
.10.1115/1.4024467
51.
Dallon
,
J. C.
,
Scott
,
M.
, and
Smith
,
W. V.
,
2013
, “
A Force Based Model of Individual Cell Migration With Discrete Attachment Sites and Random Switching Terms
,”
ASME, J. Biomech. Eng.
,
135
(7), p.
071008
. 10.1115/1.4023987
52.
Sander
,
L. M.
,
2013
, “
Alignment Localization in Non-Linear Biological Media
,”
ASME, J. Biomech. Eng.
,
135
(7), p.
071006
. 10.1115/1.4024199
53.
Freyman
,
T.
,
Yannas
,
I.
,
Yokoo
,
R.
, and
Gibson
,
L.
,
2002
, “
Fibroblast Contractile Force is Independent of the Stiffness Which Resists the Contraction
,”
Exp. Cell Res.
,
272
(
2
), pp.
153
162
.10.1006/excr.2001.5408
You do not currently have access to this content.