Both in academic research and in clinical settings, virtual simulation of the cardiovascular system can be used to rapidly assess complex multivariable interactions between blood vessels, blood flow, and the heart. Moreover, metrics that can only be predicted with computational simulations (e.g., mechanical wall stress, oscillatory shear index, etc.) can be used to assess disease progression, for presurgical planning, and for interventional outcomes. Because the pulmonary vasculature is susceptible to a wide range of pathologies that directly impact and are affected by the hemodynamics (e.g., pulmonary hypertension), the ability to develop numerical models of pulmonary blood flow can be invaluable to the clinical scientist. Pulmonary hypertension is a devastating disease that can directly benefit from computational hemodynamics when used for diagnosis and basic research. In the present work, we provide a clinical overview of pulmonary hypertension with a focus on the hemodynamics, current treatments, and their limitations. Even with a rich history in computational modeling of the human circulation, hemodynamics in the pulmonary vasculature remains largely unexplored. Thus, we review the tasks involved in developing a computational model of pulmonary blood flow, namely vasculature reconstruction, meshing, and boundary conditions. We also address how inconsistencies between models can result in drastically different flow solutions and suggest avenues for future research opportunities. In its current state, the interpretation of this modeling technology can be subjective in a research environment and impractical for clinical practice. Therefore, considerations must be taken into account to make modeling reliable and reproducible in a laboratory setting and amenable to the vascular clinic. Finally, we discuss relevant existing models and how they have been used to gain insight into cardiopulmonary physiology and pathology.

References

1.
Su
,
Z.
,
Hunter
,
K. S.
, and
Shandas
,
R.
,
2012
, “
Impact of Pulmonary Vascular Stiffness and Vasodilator Treatment in Pediatric Pulmonary Hypertension: 21 Patient-Specific Fluid-Structure Interaction Studies
,”
Comput. Meth. Prog. Biomed.
,
108
(
2
), pp.
617
628
.10.1016/j.cmpb.2011.09.002
2.
De Leval
,
M. R.
,
Dubini
,
G.
,
Migliavacca
,
F.
,
Jalali
,
H.
,
Camporini
,
G.
,
Redington
,
A.
, and
Pietrabissa
,
R.
,
1996
, “
Use of Computational Fluid Dynamics in the Design of Surgical Procedures: Application to the Study of Competitive Flows in Cavopulmonary Connections
,”
J. Thorac. Cardiovasc. Surg.
,
111
(
3
), pp.
502
513
.10.1016/S0022-5223(96)70302-1
3.
Taylor
,
C. A.
, and
Steinman
,
D. A.
,
2010
, “
Image-Based Modeling of Blood Flow and Vessel Wall Dynamics: Applications, Methods and Future Directions
,” Sixth International Bio-Fluid Mechanics Symposium and Workshop, March 28–30, 2008 Pasadena, CA, (
Ann. Biomed. Eng.
,
38
(
3
), pp.
1188
1203
).10.1007/s10439-010-9901-0
4.
Taylor
,
C. A.
, and
Figueroa
,
C. A.
,
2009
, “
Patient-Specific Modeling of Cardiovascular Mechanics
,”
Ann. Rev. Biomed. Eng.
,
11
, pp.
109
134
.10.1146/annurev.bioeng.10.061807.160521
5.
Hunter
,
K. S.
,
Feinstein
,
J. A.
,
Ivy
,
D. D.
, and
Shandas
,
R.
,
2010
, “
Computational Simulation of the Pulmonary Arteries and Its Role in the Study of Pediatric Pulmonary Hypertension
,”
Prog. Pediatr. Cardiol.
,
30
(
1–2
), pp.
63
69
.10.1016/j.ppedcard.2010.09.008
6.
Khamdaeng
,
T.
,
Luo
,
J.
,
Vappou
,
J.
,
Terdtoon
,
P.
, and
Konofagou
,
E. E.
,
2012
, “
Arterial Stiffness Identification of the Human Carotid Artery Using the Stress-Strain Relationship In Vivo
,”
Ultrasonics
,
52
(
3
), pp.
402
411
.10.1016/j.ultras.2011.09.006
7.
Resnick
,
N.
,
Yahav
,
H.
,
Shay-Salit
,
A.
,
Shushy
,
M.
,
Schubert
,
S.
,
Zilberman
,
L. C.
, and
Wofovitz
,
E.
,
2003
, “
Fluid Shear Stress and the Vascular Endothelium: For Better and for Worse
,”
Prog. Biophys. Mol. Biol.
,
81
(
3
), pp.
177
199
.10.1016/S0079-6107(02)00052-4
8.
Ando
,
J.
, and
Yamamoto
,
K.
,
2011
, “
Effects of Shear Stress and Stretch on Endothelial Function
,”
Antioxid. Redox. Signal.
,
15
(
5
), pp.
1389
1403
.10.1089/ars.2010.3361
9.
Depaola
,
N.
,
Gimbrone
,
M. A.
Jr.
,
Davies
,
P. F.
, and
Dewey
,
C. F.
, Jr.
,
1992
, “
Vascular Endothelium Responds to Fluid Shear Stress Gradients
,”
Arterioscler. Thromb.
,
12
(
11
), pp.
1254
1257
.10.1161/01.ATV.12.11.1254
10.
Kakisis
,
J. D.
,
Liapis
,
C. D.
, and
Sumpio
,
B. E.
,
2004
, “
Effects of Cyclic Strain on Vascular Cells
,”
Endothelium
,
11
(
1
), pp.
17
28
.10.1080/10623320490432452
11.
Toda
,
M.
,
Yamamoto
,
K.
,
Shimizu
,
N.
,
Obi
,
S.
,
Kumagaya
,
S.
,
Igarashi
,
T.
,
Kamiya
,
A.
, and
Ando
,
J.
,
2008
, “
Differential Gene Responses in Endothelial Cells Exposed to a Combination of Shear Stress and Cyclic Stretch
,”
J. Biotechnol.
,
133
(
2
), pp.
239
244
.10.1016/j.jbiotec.2007.08.009
12.
Haga
,
M.
,
Chen
,
A.
,
Gortler
,
D.
,
Dardik
,
A.
, and
Sumpio
,
B. E.
,
2003
, “
Shear Stress and Cyclic Strain May Suppress Apoptosis in Endothelial Cells by Different Pathways
,”
Endothelium
,
10
(
3
), pp.
149
157
.10.1080/713715223
13.
Rabinovitch
,
M.
,
2008
, “
Molecular Pathogenesis of Pulmonary Arterial Hypertension
,”
J. Clin. Invest.
,
118
(
7
), pp.
2372
2379
.10.1172/JCI33452
14.
Tian
,
L.
,
Lammers
,
S. R.
,
Kao
,
P. H.
,
Albietz
,
J. A.
,
Stenmark
,
K. R.
,
Qi
,
H. J.
,
Shandas
,
R.
, and
Hunter
,
K. S.
,
2012
, “
Impact of Residual Stretch and Remodeling on Collagen Engagement in Healthy and Pulmonary Hypertensive Calf Pulmonary Arteries at Physiological Pressures
,”
Ann. Biomed. Eng.
,
40
(
7
), pp.
1419
1433
.10.1007/s10439-012-0509-4
15.
Humphrey
,
J. D.
,
2008
, “
Mechanisms of Arterial Remodeling in Hypertension: Coupled Roles of Wall Shear and Intramural Stress
,”
Hypertension
,
52
(
2
), pp.
195
200
.10.1161/HYPERTENSIONAHA.107.103440
16.
Wang
,
Z.
, and
Chesler
,
N. C.
,
2011
, “
Pulmonary Vascular Wall Stiffness: An Important Contributor to the Increased Right Ventricular Afterload With Pulmonary Hypertension
,”
Pulm. Circ.
,
1
(
2
), pp.
212
223
.10.4103/2045-8932.83453
17.
Fourie
,
P. R.
,
Coetzee
,
A. R.
, and
Bolliger
,
C. T.
,
1992
, “
Pulmonary Artery Compliance: Its Role in Right Ventricular-Arterial Coupling
,”
Cardiovasc. Res.
,
26
(
9
), pp.
839
844
.10.1093/cvr/26.9.839
18.
Scott-Drechsel
,
D.
,
Su
,
Z.
,
Hunter
,
K.
,
Li
,
M.
,
Shandas
,
R.
, and
Tan
,
W.
,
2012
, “
A New Flow Co-Culture System for Studying Mechanobiology Effects of Pulse Flow Waves
,”
Cytotechnology
,
64
(
6
), pp.
649
666
.10.1007/s10616-012-9445-2
19.
Huang
,
W.
,
Yen
,
R. T.
,
Mclaurine
,
M.
, and
Bledsoe
,
G.
,
1996
, “
Morphometry of the Human Pulmonary Vasculature
,”
J. Appl. Physiol.
,
81
(
5
), pp.
2123
2133
.
20.
Huang
,
W.
,
Zhou
,
Q.
,
Gao
,
J.
, and
Yen
,
R. T.
,
2011
, “
A Continuum Model for Pressure-Flow Relationship in Human Pulmonary Circulation
,”
Mol. Cell Biomech.
,
8
(
2
), pp.
105
122
.10.3970/mcb.2011.008.105
21.
Nauser
,
T. D.
, and
Stites
,
S. W.
,
2001
, “
Diagnosis and Treatment of Pulmonary Hypertension
,”
Am. Fam. Physician
,
63
(
9
), pp.
1789
1798
.
22.
Hatano
,
S.
, and
Strasser
,
T.
,
1975
,
Primary Pulmonary Hypertension: Report on a WHO Meeting, Geneva, 15–17 October 1973
,
World Health Organization
,
Geneva
.
23.
Ap
,
F.
,
2001
, “
Clinical Classification of Pulmonary Hypertension
,”
Clin. Chest Med.
,
22
(
3
), pp.
385
391
.10.1016/S0272-5231(05)70278-1
24.
Simonneau
,
G.
,
Robbins
,
I. M.
,
Beghetti
,
M.
,
Channick
,
R. N.
,
Delcroix
,
M.
,
Denton
,
C. P.
,
Elliott
,
C. G.
,
Gaine
,
S. P.
,
Gladwin
,
M. T.
,
Jing
,
Z. C.
,
Krowka
,
M. J.
,
Langleben
,
D.
,
Nakanishi
,
N.
, and
Souza
,
R.
,
2009
, “
Updated Clinical Classification of Pulmonary Hypertension
,”
J. Am. Coll. Cardiol.
,
54
(
1 Suppl
), pp.
S43
S54
.10.1016/j.jacc.2009.04.012
25.
Badesch
,
D. B.
,
Champion
,
H. C.
,
Sanchez
,
M. A.
,
Hoeper
,
M. M.
,
Loyd
,
J. E.
,
Manes
,
A.
,
Mcgoon
,
M.
,
Naeije
,
R.
,
Olschewski
,
H.
,
Oudiz
,
R. J.
, and
Torbicki
,
A.
,
2009
, “
Diagnosis and Assessment of Pulmonary Arterial Hypertension
,”
J. Am. Coll. Cardiol.
,
54
(
1 Suppl
), pp.
S55
S66
.10.1016/j.jacc.2009.04.011
26.
Mclaughlin
,
V. V.
,
Archer
,
S. L.
,
Badesch
,
D. B.
,
Barst
,
R. J.
,
Farber
,
H. W.
,
Lindner
,
J. R.
,
Mathier
,
M. A.
,
Mcgoon
,
M. D.
,
Park
,
M. H.
,
Rosenson
,
R. S.
,
Rubin
,
L. J.
,
Tapson
,
V. F.
,
Varga
,
J.
,
2009
, “
ACCF/AHA 2009 Expert Consensus Document on Pulmonary Hypertension: A Report of the American College of Cardiology Foundation Task Force on Expert Consensus Documents and the American Heart Association Developed in Collaboration with the American College of Chest Physicians; American Thoracic Society, Inc.; and the Pulmonary Hypertension Association
,”
J. Am. Coll. Cardiol.
,
53
(
17
), pp.
1573
1619
.10.1016/j.jacc.2009.01.004
27.
Rubin
,
L. J.
,
2002
, “
Therapy of Pulmonary Hypertension: The Evolution From Vasodilators to Antiproliferative Agents
,”
Am. J. Respir. Crit. Care Med.
,
166
(
10
), pp.
1308
1309
.10.1164/rccm.2208008
28.
Sitbon
,
O.
,
Humbert
,
M.
,
Jais
,
X.
,
Ioos
,
V.
,
Hamid
,
A. M.
,
Provencher
,
S.
,
Garcia
,
G.
,
Parent
,
F.
,
Herve
,
P.
, and
Simonneau
,
G.
,
2005
, “
Long-Term Response to Calcium Channel Blockers in Idiopathic Pulmonary Arterial Hypertension
,”
Circulation
,
111
(
23
), pp.
3105
3111
.10.1161/CIRCULATIONAHA.104.488486
29.
Mclaughlin
,
V. V.
,
2002
, “
Survival in Primary Pulmonary Hypertension: The Impact of Epoprostenol Therapy
,”
Circulation
,
106
(
12
), pp.
1477
1482
.10.1161/01.CIR.0000029100.82385.58
30.
Galie
,
N.
,
Ghofrani
,
H. A.
,
Torbicki
,
A.
,
Barst
,
R. J.
,
Rubin
,
L. J.
,
Badesch
,
D.
,
Fleming
,
T.
,
Parpia
,
T.
,
Burgess
,
G.
,
Branzi
,
A.
,
Grimminger
,
F.
,
Kurzyna
,
M.
, and
Simonneau
,
G.
,
2005
, “
Sildenafil Use in Pulmonary Arterial Hypertension Study Sildenafil Citrate Therapy for Pulmonary Arterial Hypertension
,”
N. Engl. J. Med.
,
353
(
20
), pp.
2148
2157
.10.1056/NEJMoa050010
31.
Agarwal
,
R.
, and
Gomberg-Maitland
,
M.
,
2011
, “
Current Therapeutics and Practical Management Strategies for Pulmonary Arterial Hypertension
,”
Am. Heart J.
,
162
(
2
), pp.
201
213
.10.1016/j.ahj.2011.05.012
32.
Clapp
,
L. H.
,
Finney
,
P.
,
Turcato
,
S.
,
Tran
,
S.
,
Rubin
,
L. J.
, and
Tinker
,
A.
,
2002
, “
Differential Effects of Stable Prostacyclin Analogs on Smooth Muscle Proliferation and Cyclic Amp Generation in Human Pulmonary Artery
,”
Am. J. Respir. Cell Mol. Biol.
,
26
(
2
), pp.
194
201
.10.1165/ajrcmb.26.2.4695
33.
Hoendermis
,
E. S.
,
2011
, “
Pulmonary Arterial Hypertension: An Update
,”
Neth. Heart J.
,
19
(
12
), pp.
514
522
.10.1007/s12471-011-0222-1
34.
Benza
,
R. L.
,
Miller
,
D. P.
,
Gomberg-Maitland
,
M.
,
Frantz
,
R. P.
,
Foreman
,
A. J.
,
Coffey
,
C. S.
,
Frost
,
A.
,
Barst
,
R. J.
,
Badesch
,
D. B.
,
Elliott
,
C. G.
,
Liou
,
T. G.
, and
Mcgoon
,
M. D.
,
2010
, “
Predicting Survival in Pulmonary Arterial Hypertension: Insights From the Registry to Evaluate Early and Long-Term Pulmonary Arterial Hypertension Disease Management (Reveal)
,”
Circulation
,
122
(
2
), pp.
164
172
.10.1161/CIRCULATIONAHA.109.898122
35.
Lee
,
W. T.
,
Ling
,
Y.
,
Pepke-Zeba
,
J.
,
Peacock
,
A. J.
, and
Johnson
,
M. K.
,
2012
, “
Predicting Survival in Pulmonary Arterial Hypertension in the UK
,”
Eur Respir J.
,
40
(
3
), pp.
604
611
.10.1183/09031936.00196611
36.
Agarwal
,
R.
, and
Gomberg-Maitland
,
M.
,
2012
, “
Prognostication in Pulmonary Arterial Hypertension
,”
Heart Fail. Clin.
,
8
(
3
), pp.
373
383
.10.1016/j.hfc.2012.04.011
37.
Galie
,
N.
,
Palazzini
,
M.
, and
Manes
,
A.
,
2010
, “
Pulmonary Arterial Hypertension: From the Kingdom of the Near-Dead to Multiple Clinical Trial Meta-Analyses
,”
Eur. Heart J.
,
31
(
17
), pp.
2080
2086
.10.1093/eurheartj/ehq152
38.
O'Callaghan
,
D. S.
, and
Humbert
,
M.
,
2012
, “
A Critical Analysis of Survival in Pulmonary Arterial Hypertension
,”
Eur. Respir. Rev.
,
21
(
125
), pp.
218
222
.10.1183/09059180.00003512
39.
Mcgoon
,
M.
,
Gutterman
,
D.
,
Steen
,
V.
,
Barst
,
R.
,
Mccrory
,
D. C.
,
Fortin
,
T. A.
, and
Loyd
,
J. E.
,
2004
, “
Screening, Early Detection, and Diagnosis of Pulmonary Arterial Hypertension ACCP Evidence-Based Clinical Practice Guidelines
,”
Chest
,
126
, pp.
14S
34S
.10.1378/chest.126.1_suppl.14S
40.
Tang
,
B. T.
,
Fonte
,
T. A.
,
Chan
,
F. P.
,
Tsao
,
P. S.
,
Feinstein
,
J. A.
, and
Taylor
,
C. A.
,
2011
, “
Three-Dimensional Hemodynamics in the Human Pulmonary Arteries Under Resting and Exercise Conditions
,”
Ann. Biomed. Eng.
,
39
(
1
), pp.
347
358
.10.1007/s10439-010-0124-1
41.
Rich
,
S.
,
D'alonzo
,
G. E.
,
Dantzker
,
D. R.
, and
Levy
,
P. S.
,
1985
, “
Magnitude and Implications of Spontaneous Hemodynamic Variability in Primary Pulmonary Hypertension
,”
Am. J. Cardiol.
,
55
(
1
), pp.
159
163
.10.1016/0002-9149(85)90319-4
42.
Mcgoon
,
M. D.
, and
Kane
,
G. C.
,
2009
, “
Pulmonary Hypertension—Diagnosis and Management
,”
Mayo Clin. Proc.
,
84
(
2
), pp.
191
207
.10.4065/84.2.191
43.
Dalen
,
J. E.
, and
Bone
,
R. C.
,
1996
, “
Is It Time to Pull the Pulmonary Artery Catheter?
,”
JAMA
,
276
(
11
), pp.
916
918
.10.1001/jama.1996.03540110070035
44.
Yock
,
P. G.
, and
Popp
,
R. L.
,
1984
, “
Noninvasive Estimation of Right Ventricular Systolic Pressure by Doppler Ultrasound in Patients With Tricuspid Regurgitation
,”
Circulation
,
70
(
4
), pp.
657
662
.10.1161/01.CIR.70.4.657
45.
Fakhri
,
A. A.
,
Hughes-Doichev
,
R. A.
,
Biederman
,
R. W.
, and
Murali
,
S.
,
2012
, “
Imaging in the Evaluation of Pulmonary Artery Hemodynamics and Right Ventricular Structure and Function
,”
Heart Fail. Clin.
,
8
(
3
), pp.
353
372
.10.1016/j.hfc.2012.04.004
46.
Rudski
,
L. G.
,
Lai
,
W. W.
,
Afilalo
,
J.
,
Hua
,
L.
,
Handschumacher
,
M. D.
,
Chandrasekaran
,
K.
,
Solomon
,
S. D.
,
Louie
,
E. K.
, and
Schiller
,
N. B.
,
2010
, “
Guidelines for the Echocardiographic Assessment of the Right Heart in Adults: A Report from the American Society of Echocardiography Endorsed by the European Association of Echocardiography, a Registered Branch of the European Society of Cardiology, and the Canadian Society of Echocardiography
,”
J. Am. Soc. Echocardiogr.
,
23
(
7
), pp.
685
713
.10.1016/j.echo.2010.05.010
47.
Fisher
,
M. R.
,
Forfia
,
P. R.
,
Chamera
,
E.
,
Housten-Harris
,
T.
,
Champion
,
H. C.
,
Girgis
,
R. E.
,
Corretti
,
M. C.
, and
Hassoun
,
P. M.
,
2009
, “
Accuracy of Doppler Echocardiography in the Hemodynamic Assessment of Pulmonary Hypertension
,”
Am. J. Respir. Crit. Care Med.
,
179
(
7
), pp.
615
621
.10.1164/rccm.200811-1691OC
48.
Roberts
,
J. D.
, and
Forfia
,
P. R.
,
2011
, “
Diagnosis and Assessment of Pulmonary Vascular Disease by Doppler Echocardiography
,”
Pulm. Circ.
,
1
(
2
), pp.
160
181
.10.4103/2045-8932.83446
49.
López-Candales
,
A.
,
Rajagopalan
,
N.
,
Saxena
,
N.
,
Gulyasy
,
B.
,
Edelman
,
K.
, and
Bazaz
,
R.
,
2006
, “
Right Ventricular Systolic Function Is Not the Sole Determinant of Tricuspid Annular Motion.
,”
Am. J. Cardiol.
,
98
(
7
), pp.
973
977
.10.1016/j.amjcard.2006.04.041
50.
Kjaergaard
,
J.
,
Iversen
,
K. K.
,
Akkan
,
D.
,
Møller
,
J. E.
,
Køber
,
L. V.
,
Torp-Pedersen
,
C.
, and
Hassager
,
C.
,
2009
, “
Predictors of Right Ventricular Function as Measured by Tricuspid Annular Plane Systolic Excursion in Heart Failure
,”
Cardiovasc. Ultra.
,
7
(
51
), pp.
51.
Formaggia
,
L.
,
Lamponi
,
D.
, and
Quarteroni
,
A.
,
2003
, “
One-Dimensional Models for Blood Flow in Arteries
,”
J. Eng. Math.
,
47
(
3
), pp.
251
276
.10.1023/B:ENGI.0000007980.01347.29
52.
Olufsen
,
M. S.
,
Peskin
,
C. S.
,
Kim
,
W. Y.
,
Pedersen
,
E. M.
,
Nadim
,
A.
, and
Larsen
,
J.
,
2000
, “
Numerical Simulation and Experimental Validation of Blood Flow in Arteries With Structured-Tree Outflow Conditions
,”
Ann. Biomed. Eng.
,
28
(
11
), pp.
1281
1299
.10.1114/1.1326031
53.
Olufsen
,
M. S.
, and
Nadim
,
A.
,
2004
, “
On Deriving Lumped Models for Blood Flow and Pressure in the Systemic Arteries
,”
Math. Biosci. Eng.
,
1
(
1
), pp.
61
80
.10.3934/mbe.2004.1.61
54.
Olufsen
,
M. S.
,
2000
, “
A One-Dimensional Fluid Dynamic Model of the Systemic Arteries
,”
Stud. Health Technol. Info.
,
71
, pp.
79
98
.10.3233/978-1-60750-915-8-79
55.
Johnson
,
D. A.
,
Rose
,
W. C.
,
Edwards
,
J. W.
,
Naik
,
U. P.
, and
Beris
,
A. N.
,
2011
, “
Application of 1D Blood Flow Models of the Human Arterial Network to Differential Pressure Predictions
,”
J. Biomech.
,
44
(
5
), pp.
869
876
.10.1016/j.jbiomech.2010.12.003
56.
Olufsen
,
M. S.
,
1999
, “
Structured Tree Outflow Condition for Blood Flow in Larger Systemic Arteries
,”
Am. J. Physiol.
,
276
(
1
), pp.
H257
H268
.
57.
Vignon-Clementel
,
I. E.
,
Marsden
,
A. L.
, and
Feinstein
,
J. A.
,
2010
, “
A Primer on Computational Simulation in Congenital Heart Disease for the Clinician
,”
Prog. Ped. Cardiol.
,
30
(
1–2
), pp.
3
13
.10.1016/j.ppedcard.2010.09.002
58.
Box
,
F. M.
,
Van Der Geest
,
R. J.
,
Rutten
,
M. C.
, and
Reiber
,
J. H.
,
2005
, “
The Influence of Flow, Vessel Diameter, and Non-Newtonian Blood Viscosity on the Wall Shear Stress in a Carotid Bifurcation Model for Unsteady Flow
,”
Invest. Radiol.
,
40
(
5
), pp.
277
294
.10.1097/01.rli.0000160550.95547.22
59.
Xiang
,
J.
,
Tremmel
,
M.
,
Kolega
,
J.
,
Levy
,
E. I.
,
Natarajan
,
S. K.
, and
Meng
,
H.
,
2011
, “
Newtonian Viscosity Model Could Overestimate Wall Shear Stress in Intracranial Aneurysm Domes and Underestimate Rupture Risk
,”
J. Neurointerv. Surg.
,
4
(
5
), pp.
351
357
.10.1136/neurintsurg-2011-010089
60.
Tawhai
,
M.
,
Clark
,
A.
,
Donovan
,
G.
, and
Burrowes
,
K.
,
2011
, “
Computational Modeling of Airway and Pulmonary Vascular Structure and Function: Development of a Lung Physiome
,”
Crit. Rev. Biomed. Eng.
,
39
(
4
), pp.
319
336
.10.1615/CritRevBiomedEng.v39.i4.50
61.
Boyd
,
J.
,
Buick
,
J. M.
, and
Green
,
S.
,
2007
, “
Analysis of the Casson and Carreau–Yasuda Non-Newtonian Blood Models in Steady and Oscillatory Flows Using the Lattice Boltzmann Method
,”
Phys. Fluid.
,
19
(
9
), pp.
093103
.10.1063/1.2772250
62.
Abraham
,
F.
,
Behr
,
M.
, and
Heinkenschloss
,
M.
,
2005
, “
Shape Optimization in Steady Blood Flow: A Numerical Study of Non-Newtonian Effects
,”
Comput. Meth. Biomech. Biomed. Eng.
,
8
(
2
), pp.
127
137
.10.1080/10255840500180799
63.
64.
O'Dell
,
W. G.
,
2012
, “
Automatic Segmentation of Tumor-Laden Lung Volumes From the LIDC Database
,”
SPIE
,
8315
(
1
), p.
831531
.10.1117/12.911379
65.
Buelow
,
T.
,
Wiemker
,
R.
,
Blaffert
,
T.
,
Lorenz
,
C.
, and
Renisch
,
S.
,
2005
, “
Automatic Extraction of the Pulmonary Artery Tree From Multi-Slice CT Data
,”
Medical Imaging 2005: Physiology, Function, and Structure from Medical Images, Proceedings of the SPIE
, pp.
730
740
.
66.
Shikata
,
H.
,
Mclennan
,
G.
,
Hoffman
,
E. A.
, and
Sonka
,
M.
,
2009
, “
Segmentation of Pulmonary Vascular Trees From Thoracic 3D CT Images
,”
J. Biomed. Imag.
,
2009
, pp.
1
11
.10.1155/2009/636240
67.
Kaftan
,
J. N.
,
Kiraly
,
A. P.
,
Bakai
,
A.
,
Das
,
M.
,
Novak
,
C. L.
, and
Aach
,
T.
,
2008
, “
Fuzzy Pulmonary Vessel Segmentation in Contrast Enhanced CT Data
,”
Medical Imaging 2008: Image Processing; Proceedings of the SPIE
,
6914
, p.
69141Q
.
68.
Van Dongen
,
E.
, and
Van Ginneken
,
B.
,
2010
, “
Automatic Segmentation of Pulmonary Vasculature in Thoracic CT Scans With Local Thresholding and Airway Wall Removal
,”
2010 IEEE International Symposium on Biomedical Imaging: From Nano to Macro
, pp.
668
671
.
69.
Ebrahimdoost
,
Y.
,
Qanadli
,
S. D.
,
Nikravanshalmani
,
A.
,
Ellis
,
T. J.
,
Shojaee
,
Z. F.
, and
Dehmeshki
,
J.
,
2011
, “
Automatic Segmentation of Pulmonary Artery (PA) in 3D Pulmonary CTA Images
,”
17th International Conference on Digital Signal Processing (DSP)
, pp.
1
5
.
70.
Burrowes
,
K. S.
,
Hunter
,
P. J.
, and
Tawhai
,
M. H.
,
2005
, “
Anatomically Based Finite Element Models of the Human Pulmonary Arterial and Venous Trees Including Supernumerary Vessels
,”
J. Appl. Physiol.
,
99
(
2
), pp.
731
738
.10.1152/japplphysiol.01033.2004
71.
Horsfield
,
K.
,
1978
, “
Morphometry of the Small Pulmonary Arteries in Man
,”
Circ. Res.
,
42
(
5
), pp.
593
597
.10.1161/01.RES.42.5.593
72.
Tu
,
J.
,
Yeoh
,
G. H.
, and
Liu
,
C.
,
2008
,
Computational Fluid Dynamics—a Practical Approach
,
Elsevier Inc.
,
Burlington, MA
.
73.
Spiegel
,
M.
,
2011
, “
Patient-Specific Cerebral Vessel Segmentation With Application in Hemodynamic Simulation
,” Ph.D. Thesis, Universität Erlangen Nürnberg, Erlangen, Germany.
74.
Prakash
,
S.
, and
Ethier
,
C. R.
,
2001
, “
Requirements for Mesh Resolution in 3D Computational Hemodynamics
,”
ASME J. Biomech. Eng.
,
123
(
2
), pp.
134
144
.10.1115/1.1351807
75.
Bove
,
E. L.
,
De Leval
,
M. R.
,
Migliavacca
,
F.
,
Guadagni
,
G.
, and
Dubini
,
G.
,
2003
, “
Computational Fluid Dynamics in the Evaluation of Hemodynamic Performance of Cavopulmonary Connections After the Norwood Procedure for Hypoplastic Left Heart Syndrome
,”
J. Thorac. Cardiovasc. Surg.
,
126
(
4
), pp.
1040
1047
.10.1016/S0022-5223(03)00698-6
76.
Antiga
,
L.
,
Ene-Iordache
,
B.
, and
Remuzzi
,
A.
,
2003
, “
Computational Geometry for Patient-Specific Reconstruction and Meshing of Blood Vessels From MR and CT Angiography
,”
IEEE Trans. Med. Imag.
,
22
(
5
), pp.
674
684
.10.1109/TMI.2003.812261
77.
Steinman
,
D. A.
,
Hoi
,
Y.
,
Fahy
,
P.
,
Morris
,
L.
,
Walsh
,
M. T.
,
Aristokleous
,
N.
,
Anayiotos
,
A.
,
Papaharilaou
,
Y.
,
Arzani
,
A.
,
Shadden
,
S.
,
Berg
,
P.
,
Janiga
,
G.
,
Bols
,
J.
,
Segers
,
P.
,
Bressloff
,
N. W.
,
Cibis
,
M.
,
Gijsen
,
F. H.
,
Cito
,
S.
,
Pallarés
,
J.
,
Browne
,
L. D.
,
Costelloe
,
J. A.
,
Lynch
,
A. G.
,
Degroote
,
J.
,
Vierendeels
,
J.
,
Fu
,
W.
,
Qiao
,
A.
,
Hodis
,
S.
,
Kallmes
,
D. F.
,
Kalsi
,
H.
,
Long
,
Q.
,
Kheyfets
,
V. O.
,
Finol
,
E. A.
,
Kono
,
K.
,
Malek
,
A. M.
,
Lauric
,
A.
,
Menon
,
P. G.
,
Pekkan
,
K.
,
Moghadam
,
M. E.
,
Marsden
,
A. L.
,
Oshima
,
M.
,
Katagiri
,
K.
,
Peiffer
,
V.
,
Mohamied
,
Y.
,
Sherwin
,
S. J.
,
Schaller
,
J.
,
Goubergrits
,
L.
,
Usera
,
G.
,
Mendina
,
M.
,
Valen-Sendstad
,
K.
,
Habets
,
D. F.
,
Xiang
,
J.
,
Meng
,
H.
,
Yu
,
Y.
,
Karniadakis
,
G. E.
,
Shaffer
,
N.
, and
Loth
,
F.
,
2013
, “
Variability of CFD Solutions for Pressure and Flow in a Giant Aneurysm: The SBC2012 CFD Challenge
,”
ASME J. Biomech. Eng.
,
135
(
2
), p.
021016
.10.1115/1.4023382
78.
Nielsen
,
P. M. F.
, and
Wittek
,
A.
,
2012
,
Computational Biomechanics for Medicine: Deformation and Flow
,
Springer
,
New York
.
79.
Boutsianis
,
E.
,
Gupta
,
S.
,
Boomsma
,
K.
, and
Poulikakos
,
D.
,
2008
, “
Boundary Conditions by Schwarz-Christoffel Mapping in Anatomically Accurate Hemodynamics
,”
Ann. Biomed. Eng.
,
36
(
12
), pp.
2068
2084
.10.1007/s10439-008-9571-3
80.
Ponzini
,
R.
,
Lemma
,
M.
,
Morbiducci
,
U.
,
Montevecchi
,
F. M.
, and
Redaelli
,
A.
,
2008
, “
Doppler Derived Quantitative Flow Estimate in Coronary Artery Bypass Graft: A Computational Multiscale Model for the Evaluation of the Current Clinical Procedure
,”
Med. Eng. Phys.
,
30
(
7
), pp.
809
816
.10.1016/j.medengphy.2007.09.004
81.
Pekkan
,
K.
,
Dasi
,
L. P.
,
De Zelicourt
,
D.
,
Sundareswaran
,
K. S.
,
Fogel
,
M. A.
,
Kanter
,
K. R.
, and
Yoganathan
,
A. P.
,
2009
, “
Hemodynamic Performance of Stage-2 Univentricular Reconstruction: Glenn Vs. Hemi-Fontan Templates
,”
Ann. Biomed. Eng.
,
37
(
1
), pp.
50
63
.10.1007/s10439-008-9591-z
82.
Antiga
,
L.
,
Piccinelli
,
M.
,
Botti
,
L.
,
Ene-Iordache
,
B.
,
Remuzzi
,
A.
, and
Steinman
,
D. A.
,
2008
, “
An Image-Based Modeling Framework for Patient-Specific Computational Hemodynamics
,”
Med. Biol. Eng. Comput.
,
46
(
11
), pp.
1097
1112
.10.1007/s11517-008-0420-1
83.
Kauczor
,
H. U.
,
Ley-Zaporozhan
,
J.
, and
Ley
,
S.
,
2009
, “
Imaging of Pulmonary Pathologies: Focus on Magnetic Resonance Imaging
,”
Proc. Am. Thorac. Soc.
,
6
(
5
), pp.
458
463
.10.1513/pats.200901-002AW
84.
Zamir
,
M.
,
2000
,
The Physics of Pulsatile Flow
,
Springer-Verlag
,
New York
.
85.
Womersley
,
J. R.
,
1955
, “
Method for the Calculation of Velocity, Rate of Flow and Viscous Drag in Arteries When the Pressure Gradient Is Known
,”
J. Physiol.
,
127
(
3
), pp.
553
563
.
86.
Morgan
,
V. L.
,
Roselli
,
R. J.
, and
Lorenz
,
C. H.
,
1998
, “
Normal Three-Dimensional Pulmonary Artery Flow Determined by Phase Contrast Magnetic Resonance Imaging
,”
Ann. Biomed. Eng.
,
26
(
4
), pp.
557
566
.10.1114/1.125
87.
Miyasaka
,
K.
, and
Takata
,
M.
,
1993
, “
Flow Velocity Profile of the Pulmonary Artery Measured by the Continuous Cardiac Output Monitoring Catheter
,”
Can. J. Anaesth.
,
40
(
2
), pp.
183
187
.10.1007/BF03011318
88.
Clipp
,
R. B.
, and
Steele
,
B. N.
,
2009
, “
Impedance Boundary Conditions for the Pulmonary Vasculature Including the Effects of Geometry, Compliance, and Respiration
,”
IEEE Trans. Biomed. Eng.
,
56
(
3
), pp.
862
870
.10.1109/TBME.2008.2010133
89.
Grinberg
,
L.
, and
Karniadakis
,
G. E.
,
2008
, “
Outflow Boundary Conditions for Arterial Networks With Multiple Outlets
,”
Ann. Biomed. Eng.
,
36
(
9
), pp.
1496
1514
.10.1007/s10439-008-9527-7
90.
Morbiducci
,
U.
,
Gallo
,
D.
,
Massai
,
D.
,
Consolo
,
F.
,
Ponzini
,
R.
,
Antiga
,
L.
,
Bignardi
,
C.
,
Deriu
,
M. A.
, and
Redaelli
,
A.
,
2010
, “
Outflow Conditions for Image-Based Hemodynamic Models of the Carotid Bifurcation: Implications for Indicators of Abnormal Flow
,”
ASME J. Biomech. Eng.
,
132
(
9
), p.
091005
.10.1115/1.4001886
91.
Vignon-Clementel
,
I. E.
,
Figueroa
,
C. A.
,
Jansen
,
K. E.
, and
Taylor
,
C. A.
,
2006
, “
Outflow Boundary Conditions for Three-Dimensional Finite Element Modeling of Blood Flow and Pressure in Arteries
,”
Comput. Meth. Appl. Mech. Eng.
,
195
, pp.
3776
3796
.10.1016/j.cma.2005.04.014
92.
Botnar
,
R.
,
Rappitsch
,
G.
,
Scheidegger
,
M. B.
,
Liepsch
,
D.
,
Perktold
,
K.
, and
Boesiger
,
P.
,
2000
, “
Hemodynamics in the Carotid Artery Bifurcation: A Comparison Between Numerical Simulations and In Vitro MRI Measurements
,”
J. Biomech.
,
33
(
2
), pp.
137
144
.10.1016/S0021-9290(99)00164-5
93.
Ansys
,
2011
,
ANSYS® Academic Research, Release 14.0, Help System
,
Coupled Field Analysis Guide, ANSYS, Inc
,
Canonsburg, PA
.
94.
Horsfield
,
K.
, and
Woldenberg
,
M. J.
,
1989
, “
Diameters and Cross-Sectional Areas of Branches in the Human Pulmonary Arterial Tree
,”
Anat Rec
,
223
(
3
), pp.
245
251
.10.1002/ar.1092230302
95.
Orlando
,
W.
,
Shandas
,
R.
, and
Degroff
,
C.
,
2006
, “
Efficiency Differences in Computational Simulations of the Total Cavo-Pulmonary Circulation With and Without Compliant Vessel Walls
,”
Comput Methods Programs Biomed
,
81
(
3
), pp.
220
227
.10.1016/j.cmpb.2005.11.010
96.
Hunter
,
K. S.
,
Lanning
,
C. J.
,
Chen
,
S. Y.
,
Zhang
,
Y.
,
Garg
,
R.
,
Ivy
,
D. D.
, and
Shandas
,
R.
,
2006
, “
Simulations of Congenital Septal Defect Closure and Reactivity Testing in Patient-Specific Models of the Pediatric Pulmonary Vasculature: A 3D Numerical Study With Fluid-Structure Interaction
,”
ASME, J. Biomech. Eng.
,
128
(
4
), pp.
564
572
.10.1115/1.2206202
97.
Kung
,
E.
, and
Taylor
,
C.
,
2011
, “
Development of a Physical Windkessel Module to Re-Create In Vivo Vascular Flow Impedance for In Vitro Experiments
,”
Cardiovasc. Eng. Tech.
,
2
(
1
), pp.
2
14
.10.1007/s13239-010-0030-6
98.
Westerhof
,
N.
,
Lankhaar
,
J.-W.
, and
Westerhof
,
B.
,
2009
, “
The Arterial Windkessel
,”
Med. Bio. Eng. Comput.
,
47
(
2
), pp.
131
141
.10.1007/s11517-008-0359-2
99.
Vignon-Clementel
,
I. E.
,
Figueroa
,
C. A.
,
Jansen
,
K. E.
, and
Taylor
,
C. A.
,
2010
, “
Outflow Boundary Conditions for 3D Simulations of Non-Periodic Blood Flow and Pressure Fields in Deformable Arteries
,”
Comput. Meth. Biomech. Biomed. Eng.
,
13
(
5
), pp.
625
640
.10.1080/10255840903413565
100.
Pahlevan
,
N. M.
,
Amlani
,
F.
,
Hossein Gorji
,
M.
,
Hussain
,
F.
, and
Gharib
,
M.
,
2011
, “
A Physiologically Relevant, Simple Outflow Boundary Model for Truncated Vasculature
,”
Ann. Biomed. Eng.
,
39
(
5
), pp.
1470
1481
.10.1007/s10439-011-0246-0
101.
Formaggia
,
L.
,
Lamponi
,
D.
,
Tuveri
,
M.
, and
Veneziani
,
A.
,
2006
, “
Numerical Modeling of 1D Arterial Networks Coupled With a Lumped Parameters Description of the Heart
,”
Comput. Meth. Biomech. Biomed. Eng.
,
9
(
5
), pp.
273
288
.10.1080/10255840600857767
102.
Van Den Bos
,
G. C.
,
Westerhof
,
N.
, and
Randall
,
O. S.
,
1982
, “
Pulse Wave Reflection: Can It Explain the Differences Between Systemic and Pulmonary Pressure and Flow Waves? A Study in Dogs
,”
Circ. Res.
,
51
(
4
), pp.
479
485
.10.1161/01.RES.51.4.479
103.
Steele
,
B. N.
,
Olufsen
,
M. S.
, and
Taylor
,
C. A.
,
2007
, “
Fractal Network Model for Simulating Abdominal and Lower Extremity Blood Flow During Resting and Exercise Conditions
,”
Comput. Meth. Biomech. Biomed. Eng.
,
10
(
1
), pp.
39
51
.10.1080/10255840601068638
104.
Spilker
,
R. L.
,
Feinstein
,
J. A.
,
Parker
,
D. W.
,
Reddy
,
V. M.
, and
Taylor
,
C. A.
,
2007
, “
Morphometry-Based Impedance Boundary Conditions for Patient-Specific Modeling of Blood Flow in Pulmonary Arteries
,”
Ann. Biomed. Eng.
,
35
(
4
), pp.
546
559
.10.1007/s10439-006-9240-3
105.
Bazilevs
,
Y.
,
Hsu
,
M. C.
,
Benson
,
D. J.
,
Sankaran
,
S.
, and
Marsden
,
A. L.
,
2009
, “
Computational Fluid–Structure Interaction: Methods and Application to a Total Cavopulmonary Connection
,”
Comput. Mech.
,
45
(
1
), pp.
77
89
.10.1007/s00466-009-0419-y
106.
Figueroa
,
C. A.
,
Vignon-Clementel
,
I. E.
,
Jansen
,
K. E.
,
Hughes
,
T. J. R.
, and
Taylor
,
C. A.
,
2006
, “
A Coupled Momentum Method for Modeling Blood Flow in Three-Dimensional Deformable Arteries
,”
Comput. Meth. Appl. Mech. Eng.
,
195
(
41–43
), pp.
5685
5706
.10.1016/j.cma.2005.11.011
107.
Zhou
,
J.
, and
Fung
,
Y. C.
,
1997
, “
The Degree of Nonlinearity and Anisotropy of Blood Vessel Elasticity
,”
Proc. Natl. Acad. Sci. USA
,
94
(
26
), pp.
14255
14260
.10.1073/pnas.94.26.14255
108.
Kim
,
J.
, and
Baek
,
S.
,
2011
, “
Circumferential Variations of Mechanical Behavior of the Porcine Thoracic Aorta During the Inflation Test
,”
J. Biomech.
,
44
(
10
), pp.
1941
1947
.10.1016/j.jbiomech.2011.04.022
109.
Sacks
,
M. S.
,
2000
, “
Biaxial Mechanical Evaluation of Planar Biological Materials
,”
J. Elast.
,
61
(
1–3
), pp.
199
246
.10.1023/A:1010917028671
110.
Sacks
,
M. S.
, and
Sun
,
W.
,
2003
, “
Multiaxial Mechanical Behavior of Biological Materials
,”
Ann. Rev. Biomed. Eng.
,
5
, pp.
251
284
.10.1146/annurev.bioeng.5.011303.120714
111.
Lammers
,
S. R.
,
Kao
,
P. H.
,
Qi
,
H. J.
,
Hunter
,
K.
,
Lanning
,
C.
,
Albietz
,
J.
,
Hofmeister
,
S.
,
Mecham
,
R.
,
Stenmark
,
K. R.
, and
Shandas
,
R.
,
2008
, “
Changes in the Structure-Function Relationship of Elastin and Its Impact on the Proximal Pulmonary Arterial Mechanics of Hypertensive Calves
,”
Am. J. Physiol. Heart. Circ. Physiol.
,
295
(
4
), pp.
H1451
H1459
.10.1152/ajpheart.00127.2008
112.
Sacks
,
M. S.
,
2003
, “
Incorporation of Experimentally-Derived Fiber Orientation Into a Structural Constitutive Model for Planar Collagenous Tissues
,”
ASME J. Biomech. Eng.
,
125
(
2
), pp.
280
287
.10.1115/1.1544508
113.
Genovese
,
K.
,
Lee
,
Y. U.
, and
Humphrey
,
J. D.
,
2011
, “
Novel Optical System for In Vitro Quantification of Full Surface Strain Fields in Small Arteries: II. Correction for Refraction and Illustrative Results
,”
Comput. Meth. Biomech. Biomed. Eng.
,
14
(
3
), pp.
227
237
.10.1080/10255842.2010.545824
114.
Genovese
,
K.
,
Lee
,
Y. U.
, and
Humphrey
,
J. D.
,
2011
, “
Novel Optical System for In Vitro Quantification of Full Surface Strain Fields in Small Arteries: I. Theory and Design
,”
Comput. Meth. Biomech. Biomed. Eng.
,
14
(
3
), pp.
213
225
.10.1080/10255842.2010.545823
115.
Kao
,
P. H.
,
Lammers
,
S. R.
,
Tian
,
L.
,
Hunter
,
K.
,
Stenmark
,
K. R.
,
Shandas
,
R.
, and
Qi
,
H. J.
,
2011
, “
A Microstructurally Driven Model for Pulmonary Artery Tissue
,”
ASME J. Biomech. Eng.
,
133
(
5
), p.
051002
.10.1115/1.4002698
116.
Quaini
,
A.
,
Canic
,
S.
,
Glowinski
,
R.
,
Igo
,
S.
,
Hartley
,
C. J.
,
Zoghbi
,
W.
, and
Little
,
S.
,
2012
, “
Validation of a 3D Computational Fluid–Structure Interaction Model Simulating Flow Through an Elastic Aperture
,”
J. Biomech.
,
45
(
2
), pp.
310
318
.10.1016/j.jbiomech.2011.10.020
117.
Zhu
,
Y.
, and
Granick
,
S.
,
2002
, “
Limits of the Hydrodynamic No-Slip Boundary Condition
,”
Phys. Rev. Lett.
,
88
(
10
), p.
106102
.10.1103/PhysRevLett.88.106102
118.
Bukač
,
M.
,
Čanić
,
S.
,
Glowinski
,
R.
,
Tambača
,
J.
, and
Quaini
,
A.
,
2013
, “
Fluid–Structure Interaction in Blood Flow Capturing Non-Zero Longitudinal Structure Displacement
,”
J. Comput. Phys.
,
235
, pp.
515
541
.10.1016/j.jcp.2012.08.033
119.
Formaggia
,
L.
,
Gerbeau
,
J. F.
,
Nobile
,
F.
, and
Quarteroni
,
A.
,
2001
, “
On the Coupling of 3D and 1D Navier–Stokes Equations for Flow Problems in Compliant Vessels
,”
Comput. Meth. Appl. Mech. Eng.
,
191
(
6–7
), pp.
561
582
.10.1016/S0045-7825(01)00302-4
120.
Zarins
,
C. K.
,
Zatina
,
M. A.
,
Giddens
,
D. P.
,
Ku
,
D. N.
, and
Glagov
,
S.
,
1987
, “
Shear Stress Regulation of Artery Lumen Diameter in Experimental Atherogenesis
,”
J. Vasc. Surg.
,
5
(
3
), pp.
413
420
.10.1067/mva.1987.avs0050413
121.
Kleinstreuer
,
C.
,
2006
,
Biofluid Dynamics—Principles and Selected Applications
,
CRC Press; Taylor and Francis Group, LLC
,
Boca Raton, FL
.
122.
Miyamoto
,
S.
,
Nagaya
,
N.
,
Satoh
,
T.
,
Kyotani
,
S.
,
Sakamaki
,
F.
,
Fujita
,
M.
,
Nakanishi
,
N.
, and
Miyatake
,
K.
,
2000
, “
Clinical Correlates and Prognostic Significance of Six-Minute Walk Test in Patients With Primary Pulmonary Hypertension. Comparison With Cardiopulmonary Exercise Testing
,”
Am. J. Respir. Crit. Care Med.
,
161
(
2
), pp.
487
492
.10.1164/ajrccm.161.2.9906015
123.
Sotelo
,
J. A.
,
Bachler
,
P.
,
Chabert
,
S.
,
Hurtado
,
D.
,
Irarrazaval
,
P.
,
Tejos
,
C.
, and
Uribe
,
S.
,
2012
, “
Normal Values of Wall Shear Stress in the Pulmonary Artery From 4D Flow Data
,”
J. Cardiovasc. Magn. Reson.
,
14
(
1 Suppl
), p.
W66
.10.1186/1532-429X-14-S1-W66
124.
Chien
,
S.
,
2008
, “
Effects of Disturbed Flow on Endothelial Cells
,”
Ann. Biomed. Eng.
,
36
(
4
), pp.
554
562
.10.1007/s10439-007-9426-3
125.
Hunter
,
K. S.
,
Lee
,
P. F.
,
Lanning
,
C. J.
,
Ivy
,
D. D.
,
Kirby
,
K. S.
,
Claussen
,
L. R.
,
Chan
,
K. C.
, and
Shandas
,
R.
,
2008
, “
Pulmonary Vascular Input Impedance Is a Combined Measure of Pulmonary Vascular Resistance and Stiffness and Predicts Clinical Outcomes Better Than Pulmonary Vascular Resistance Alone in Pediatric Patients With Pulmonary Hypertension
,”
Am. Heart J.
,
155
(
1
), pp.
166
174
.10.1016/j.ahj.2007.08.014
126.
Christophe
,
J. J.
,
Ishikawa
,
T.
,
Imai
,
Y.
,
Takase
,
K.
,
Thiriet
,
M.
, and
Yamaguchi
,
T.
,
2012
, “
Hemodynamics in the Pulmonary Artery of a Patient With Pneumothorax
,”
Med. Eng. Phys.
,
34
(
6
), pp.
725
732
.10.1016/j.medengphy.2011.09.016
127.
De Leval
,
M. R.
,
Dubini
,
G.
,
Migliavacca
,
F.
,
Jalali
,
H.
,
Camporini
,
G.
,
Redington
,
A.
, and
Pietrabissa
,
R.
,
1996
, “
Use of Computational Fluid Dynamics in the Design of Surgical Procedures: Application to the Study of Competitive Flows in Cavo-Pulmonary Connections
,”
J. Thorac. Cardiovasc. Surg.
,
111
(
3
), pp.
502
513
.10.1016/S0022-5223(96)70302-1
128.
Rodes-Cabau
,
J.
,
Domingo
,
E.
,
Roman
,
A.
,
Majo
,
J.
,
Lara
,
B.
,
Padilla
,
F.
,
Anivarro
,
I.
,
Angel
,
J.
,
Tardif
,
J. C.
, and
Soler-Soler
,
J.
,
2003
, “
Intravascular Ultrasound of the Elastic Pulmonary Arteries: A New Approach for the Evaluation of Primary Pulmonary Hypertension
,”
Heart
,
89
(
3
), pp.
311
315
.10.1136/heart.89.3.311
129.
Henk
,
C. B.
,
Schlechta
,
B.
,
Grampp
,
S.
,
Gomischek
,
G.
,
Klepetko
,
W.
, and
Mostbeck
,
G. H.
,
1998
, “
Pulmonary and Aortic Blood Flow Measurements in Normal Subjects and Patients After Single Lung Transplantation at 0.5 T Using Velocity Encoded Cine MRI
,”
Chest
,
114
(
3
), pp.
771
779
.10.1378/chest.114.3.771
You do not currently have access to this content.