The development of predictive computer human models in whole-body vibration has shown some success in predicting simple types of motion, mostly for seated positions and in the uniaxial vertical direction. The literature revealed only a handful of papers that tackled supine human modeling in response to vertical vibration. The objective of this work is to develop a predictive, multibody, three-dimensional human model to simulate the supine human and underlying transport system in response to multidirectional whole-body vibration. A three-dimensional dynamic model of a supine human and its underlying transport system is presented in this work to predict supine-human biodynamic response under three-dimensional input random whole-body vibration. The proposed supine-human model consists of three interconnected segments representing the head, torso-arms, and pelvis-legs. The segments are connected via rotational and translational joints that have spring-damper components simulating the three-dimensional muscles and tissuelike connecting elements in the three x, y, and z directions. Two types of transport systems are considered in this work, a rigid support and a long spinal board attached to a standard military litter. The contact surfaces between the supine human and the underlying transport system are modeled using spring-damper components. Eight healthy supine human subjects were tested under combined-axis vibration files with a magnitude of 0.5 m/s2 (rms) and a frequency content of 0.5–16 Hz. The data from seven subjects were used in parameter identification for the dynamic model using optimization schemes in the frequency domain that minimize the differences between the magnitude and phase of the predicted and experimental transmissibility. The predicted accelerations in the time and frequency domains were comparable to those gathered from experiments under different anthropometric, input vibration, and transport conditions under investigation. Based on the results, the proposed dynamic model has the potential to be used to provide motion data to drive a detailed finite element model of a supine human for further investigation of muscle forces and joint dynamics. The predicted kinematics of the supine human and transport system would also benefit patient safety planners and vibration suppression designers in their endeavors.

References

References
1.
Vogel
,
H.
,
Kohlhaas
,
R.
, and
von Baumgarten
,
R. J.
,
1982
, “
Dependence of Motion Sickness in Automobiles on the Direction of Linear Acceleration
,”
Eur. J. Appl. Physiol. Occupational Physiol.
,
48
(
3
), pp.
399
405
.10.1007/BF00430230
2.
Harris
,
C. M.
, and
Piersol
,
A. G.
,
2002
,
Harris' Shock and Vibration Handbook
,
McGraw-Hill
,
NY
.
3.
Bouchut
,
J. C.
,
Van Lancker
,
E.
,
Chritin
,
V.
, and
Gueuqniaud
,
P. Y.
,
2011
, “
Physical Stressors During Neonatal Transport: Helicopter Compared With Ground Ambulance
,”
Air Med. J.
,
30
(
3
), pp.
134
139
.10.1016/j.amj.2010.11.001
4.
Cobb
,
S.
,
Russo
,
T.
,
Kutash
,
M.
, and
Kellems
,
R.
,
2012
, “
Medical Flight Crew Perceived Work-Related Musculoskeletal Symptoms and Related Characteristics
,”
Air Med. J.
,
31
(
1
), pp.
36
41
.10.1016/j.amj.2011.04.007
5.
Huang
,
Y.
, and
Griffin
,
M. J.
,
2008
, “
Nonlinear Dual-Axis Biodynamic Response of the Semi-Supine Human Body During Longitudinal Horizontal Whole-Body Vibration
,”
J. Sound Vibr.
,
312
(
1–2
), pp.
273
295
.10.1016/j.jsv.2007.10.047
6.
Huang
,
Y.
, and
Griffin
,
M. J.
,
2009
, “
Nonlinearity in Apparent Mass and Transmissibility of the Supine Human Body During Vertical Whole-Body Vibration
,”
J. Sound Vibr.
,
324
(
1–2
), pp.
429
452
.10.1016/j.jsv.2009.02.017
7.
Griffin
,
M. J.
,
1978
, “
The Evaluation of Vehicle Vibration and Seats
,”
Appl. Ergonom.
,
9
(
1
), pp.
15
21
.10.1016/0003-6870(78)90214-4
8.
Luo
,
Z.
, and
Goldsmith
,
W.
,
1991
, “
Reaction of a Human Head Neck Torso System to Shock
,”
J. Biomech.
,
24
(
7
), pp.
499
510
.10.1016/0021-9290(91)90284-T
9.
Seidel
,
H.
, and
Griffin
,
M. J.
,
2001
, “
Modelling the Response of the Spinal System to Whole-Body Vibration and Repeated Shock
,”
Clin. Biomech. (Bristol, Avon)
,
16
, pp.
S3
S7
.10.1016/S0268-0033(00)00095-4
10.
Qassem
,
W.
,
Othman
,
M. O.
, and
Abdul-Majeed
,
S.
,
1994
, “
The Effects of Vertical and Horizontal Vibrations on the Human Body
,”
Med. Eng. Phys.
,
16
(
2
), pp.
151
161
.10.1016/1350-4533(94)90028-0
11.
Boileau
,
P. A.
, and
Rakheja
,
S.
,
1998
, “
Whole-Body Vertical Biodynamic Response Characteristics of the Seated Vehicle Driver: Measurement and Model Development
,”
Int. J. Ind. Ergonomics
,
22
(
6
), pp.
449
472
.10.1016/S0169-8141(97)00030-9
12.
Smith
,
S. D.
,
2000
, “
The Effects of Head Orientation on Head/Helmet Vibration Response
,”
SAFE J.
,
30
(
1
), pp.
114
125
.
13.
Nikooyan
,
A. A.
, and
Zadpoor
,
A. A.
,
2011
, “
Mass-Spring-Damper Modelling of the Human Body to Study Running and Hopping–An Overview
,”
Proc. Inst. Mech. Eng. H
,
225
(
12
), pp.
1121
1135
.
14.
Amirouche
,
F. M. L.
,
1987
, “
Modeling of Human Reactions to Whole-Body Vibration
,”
J. Biomech. Eng.
,
109
(
3
), pp.
210
217
.10.1115/1.3138671
15.
Pankoke
,
S.
,
Hofmann
,
J.
, and
Wolfel
,
H. P.
,
2001
, “
Determination of Vibration-Related Spinal Loads by Numerical Simulation
,”
Clin. Biomech. (Bristol, Avon)
,
16
, pp.
S45
S56
.10.1016/S0268-0033(00)00100-5
16.
Bazrgari
,
B.
,
Shirazi-Adl
,
A.
, and
Kasra
,
M.
,
2008
, “
Computation of Trunk Muscle Forces, Spinal Loads and Stability in Whole-Body Vibration
,”
J. Sound Vib.
,
318
, pp.
1334
1347
.10.1016/j.jsv.2008.04.047
17.
Wang
,
W.
,
Bazrgari
,
B.
,
Shirazi-Adl
,
A.
,
Rakheja
,
S.
, and
Boileau
,
P-E.
,
2010
, “
Biodynamic Response and Spinal Load Estimation of Seated Body in Vibration Using Finite Element Modeling
,”
Ind. Health
,
48
(
5
), pp.
557
564
.10.2486/indhealth.MSWBVI-34
18.
Fritz
,
M.
,
1998
, “
Three-Dimensional Biomechanical Model For Simulating the Response of the Human Body to Vibration Stress
,”
Med. Biol. Eng. Comput.
,
36
(
6
), pp.
686
692
.10.1007/BF02518870
20.
Vogt
,
L. H.
,
Mertens
,
H.
, and
Krause
,
H. E.
,
1978
, “
Model of the Supine Human Body and Its Reactions to External Forces
,”
Aviation, Space, and Environ. Med.
,
49
(
2
), pp.
270
278
. Available at: http://www.keepthefaith1296.com/parkinsons/model-of-the-supine-human-body-and-its-reactions-to-external-forces-NjIzNTk0.htm
21.
Peng
,
B.
,
Yang
,
Y.
, and
Luo
,
Y.
,
2009
, “
Modeling and Simulation on the Vibration Comfort of Railway Sleeper Carriages
,”
ASCE International Conference on Transportation Engineering
, pp.
3766
3771
.10.1061/41039(345)621
22.
Meusch
,
J.
,
2012
,
Supine Human Response and Vibration-Suppression During Whole-Body Vibration
,
The University of Iowa
,
IA
.
23.
Rahmatalla
,
S.
, and
DeShaw
,
J.
,
2011
, “
Predictive Discomfort of Non-Neutral Head-Neck Postures in Fore-Aft Whole Body Vibration
,”
Ergonomics
,
54
, pp.
263
272
.10.1080/00140139.2010.547606
24.
DeShaw
,
J.
, and
Rahmatalla
,
S.
,
2012
, “
Comprehensive Measurement in Whole-Body Vibration
,”
J. Low Freq. Noise, Vib., Act. Control
,
31
(
2
), pp.
63
74
.10.1260/0263-0923.31.2.63
25.
Schoukens
,
J.
, and
Pintelon
,
R.
,
1990
, “
Measurement of Frequency Response Functions in Noisy Environments
,”
IEEE Trans. Instrum. Meas.
,
39
(
6
), pp.
905
909
.10.1109/19.65795
26.
Denavit
,
J.
, and
Hartenberg
,
R. S.
,
1955
, “
A Kinematic Notation for Lower-Pair Mechanisms Based on Matrices
,”
ASME J. Appl. Mech.
,
22
, pp.
215
221
.
27.
Liang
,
C.-C.
, and
Chiang
,
C.-F.
,
2008
, “
Modeling of a Seated Human Body Exposed to Vertical Vibration in Various Automotive Postures
,”
Ind. Health
,
46
, pp.
125
137
.10.2486/indhealth.46.125
28.
Qassem
,
W.
,
1996
, “
Model Prediction of Vibration Effects on Human Subject Seated on Various Cushions
,”
Med. Eng. Phys.
,
18
, pp.
350
358
.10.1016/1350-4533(95)00060-7
29.
Dempster
,
W. T.
, and
Gaughran
,
G. R. L.
,
1967
, “
Properties of Body Segments Based on Size and Weight
,”
Am. J. Anat.
,
120
(
1
), pp.
33
54
.10.1002/aja.1001200104
30.
Winter
,
D. A.
,
1979
,
Biomechanics of Human Movement
,
Wiley
,
New York.
31.
Winter
,
D. A.
,
2005
,
Biomechanics and Motor Control of Human Movement
,
Wiley
,
New York
.
32.
Cho
,
Y.
, and
Yoon
,
Y. S.
,
2001
, “
Biomechanical Model of Human on Seat With Backrest for Evaluating Ride Quality
,”
Int. J. Ind. Ergonomics
,
27
, pp.
331
345
.10.1016/S0169-8141(00)00061-5
33.
Mathworks
,
2010
,
Optimization's ToolBox User's Guide
,
Mathworks, Inc.
34.
Amirouche
,
F. M. L.
, and
Ider
,
S. K.
,
1988
, “
Simulation and Analysis of a Biodynamic Human Model Subjected to Low Accelerations: A Correlation Study
,”
J. Sound Vib.
,
123
(
2
), pp.
281
292
.10.1016/S0022-460X(88)80111-1
35.
Panjabi
,
M. M.
,
Brand
,
R. A.
, Jr.
, and
White
,
A. A.
,
1976
, “
Three-Dimensional Flexibility and Stiffness Properties of the Human Thoracic Spine
,”
J. Biomech.
,
9
(
4
), pp.
185
192
.10.1016/0021-9290(76)90003-8
36.
Newland
,
D. E.
,
1984
,
An Introduction to Random Vibrations and Spectral Analysis
,
Longman Inc.
,
New York
.
37.
Bazrgari
,
B.
,
Nussbaum
,
M. A.
,
Madigan
,
M. L.
, and
Shirazi-Adl
,
A.
,
2010
, “
Soft Tissue Wobbling Affects Trunk Dynamic Response in Sudden Perturbations
,”
J. Biomech.
,
44
(
3
), pp.
547
551
.10.1016/j.jbiomech.2010.09.021
38.
Yue
,
Z.
, and
Mester
,
J.
,
2002
, “
A Model Analysis of Internal Loads, Energetics, and Effects of Wobbling Mass During the Whole-Body Vibration
,”
J. Biomech.
,
35
, pp.
639
650
.10.1016/S0021-9290(01)00243-3
39.
Fuller
,
J.
,
Liu
,
L.-J.
,
Murphy
,
M. C.
, and
Mann
,
R. W.
,
1997
, “
A Comparison of Lower-Extremity Skeletal Kinematics Measured Using Skin- and Pin-Mounted Markers
,”
Human Movement Sci.
,
16
(
2–3
), pp.
219
242
.10.1016/S0167-9457(96)00053-X
40.
Reinschmidt
,
C.
,
Van den Bogert
,
A. J.
,
Nigg
,
B. M.
,
Lundberg
,
A.
, and
Murphy
,
N.
,
1997
, “
Effect of Skin Movement on the Analysis of Skeletal Knee Joint Motion During Running
,”
J. Biomech.
,
30
(
7
), pp.
729
732
.10.1016/S0021-9290(97)00001-8
You do not currently have access to this content.