HIV/AIDS is a growing global pandemic. A microbicide is a formulation of a pharmaceutical agent suspended in a delivery vehicle, and can be used by women to protect themselves against HIV infection during intercourse. We have developed a three-dimensional (3D) computational model of a shear-thinning power-law fluid spreading under the influence of gravity to represent the distribution of a microbicide gel over the vaginal epithelium. This model, accompanied by a new experimental methodology, is a step in developing a tool for optimizing a delivery vehicle's structure/function relationship for clinical application. We compare our model with experiments in order to identify critical considerations for simulating 3D free-surface flows of shear-thinning fluids. Here we found that neglecting lateral spreading, when modeling gravity-induced flow, resulted in up to 47% overestimation of the experimental axial spreading after 90 s. In contrast, the inclusion of lateral spreading in 3D computational models resulted in rms errors in axial spreading under 7%. In addition, the choice of the initial condition for shape in the numerical simulation influences the model's ability to describe early time spreading behavior. Finally, we present a parametric study and sensitivity analysis of the power-law parameters' influence on axial spreading, and to examine the impact of changing rheological properties as a result of dilution or formulation conditions. Both the shear-thinning index (n) and consistency (m) impacted the spreading length and deceleration of the moving front. The sensitivity analysis showed that gels with midrange m and n values (for the ranges in this study) would be most sensitive (over 8% changes in spreading length) to 10% changes (e.g., from dilution) in both rheological properties. This work is applicable to many industrial and geophysical thin-film flow applications of non-Newtonian fluids; in addition to biological applications in microbicide drug delivery.

References

References
1.
UNAIDS
,
2010
,
UNAIDS Report on the Global AIDS Epidemic
, www.unaids.org/globalreport/Global_report.htm
2.
Cutler
,
B.
, and
Justman
,
J.
,
2008
, “
Vaginal Microbicides and the Prevention of HIV Transmission
,”
Lancet Infect. Dis.
,
8
(
11
), pp.
685
697
.10.1016/S1473-3099(08)70254-8
3.
Kieweg
,
S. L.
,
Geonnotti
,
A. R.
, and
Katz
,
D. F.
,
2004
, “
Gravity-Induced Coating Flows of Vaginal Gel Formulations: In Vitro Experimental Analysis
,”
J. Pharm. Sci.
,
93
(
12
), pp.
2941
2952
.10.1002/jps.20194
4.
Hu
,
B.
, and
Kieweg
,
S. L.
,
2012
, “
The Effect of Surface Tension on the Gravity-Driven Thin Film Flow of Newtonian and Power-Law Fluids
,”
Comput. Fluids
,
64
, pp.
83
90
.10.1016/j.compfluid.2012.05.009
5.
Szeri
,
A. J.
,
Park
,
S. C.
,
Verguet
,
S.
,
Weiss
,
A.
, and
Katz
,
D. F.
,
2008
, “
A Model of Transluminal Flow of an Anti-HIV Microbicide Vehicle: Combined Elastic Squeezing and Gravitational Sliding
,”
Phys. Fluids
,
20
(
8
), p.
083101
.10.1063/1.2973188
6.
Kieweg
,
S. L.
, and
Katz
,
D. F.
,
2006
, “
Squeezing Flows of Vaginal Gel Formulations Relevant to Microbicide Drug Delivery
,”
ASME J. Biomech. Eng.
,
128
(
4
), pp.
540
553
.10.1115/1.2206198
7.
Kieweg
,
S. L.
, and
Katz
,
D. F.
,
2007
, “
Interpreting Properties of Microbicide Drug Delivery Gels: Analyzing Deployment Kinetics Due to Squeezing
,”
J. Pharm. Sci.
,
96
(
4
), pp.
835
850
.10.1002/jps.20774
8.
Lai
,
B. E.
,
Xie
,
Y. Q.
,
Lavine
,
M. L.
,
Szeri
,
A. J.
,
Owen
,
D. H.
, and
Katz
,
D. F.
,
2008
, “
Dilution of Microbicide Gels With Vaginal Fluid and Semen Simulants: Effect on Rheological Properties and Coating Flow
,”
J. Pharm. Sci.
,
97
(
2
), pp.
1030
1038
.10.1002/jps.21132
9.
Tasoglu
,
S.
,
Katz
,
D. F.
, and
Szeri
,
A. J.
,
2012
, “
Transient Spreading and Swelling Behavior of a Gel Deploying an Anti-HIV Topical Microbicide
,”
J. Non-Newtonian Fluid Mech.
,
187–188
, pp.
36
42
.10.1016/j.jnnfm.2012.08.008
10.
Tien
,
D.
,
Schnaare
,
R. L.
,
Kang
,
F.
,
Cohl
,
G.
,
Mccormick
,
T. J.
,
Moench
,
T. R.
,
Doncel
,
G.
,
Watson
,
K.
,
Buckheit
,
R. W.
,
Lewis
,
M. G.
,
Schwartz
,
J.
,
Douville
,
K.
, and
Romano
,
J. W.
,
2005
, “
In Vitro and In Vivo Characterization of a Potential Universal Placebo Designed for Use in Vaginal Microbicide Clinical Trials
,”
AIDS Res. Hum. Retroviruses
,
21
(
10
), pp.
845
853
.10.1089/aid.2005.21.845
11.
Myers
,
T. G.
,
2005
, “
Application of Non-Newtonian Models to Thin Film Flow
,”
Phys. Rev. E
,
72
(
6
), p.
066302
.10.1103/PhysRevE.72.066302
12.
Ancey
,
C.
,
2007
, “
Plasticity and Geophysical Flows: A Review
,”
J. Non-Newtonian Fluid Mech.
,
142
(
1–3
), pp.
4
35
.10.1016/j.jnnfm.2006.05.005
13.
Bird
,
B. R.
,
Dai
,
G. G.
, and
Yarusso
,
B. J.
,
1982
, “
The Rheology and Flow of Viscoplastic Materials
,”
Rev. Chem. Eng.
,
1
(
1
), pp.
1
70
.
14.
Mei
,
C. C.
, and
Yuhi
,
M.
,
2001
, “
Slow Down of a Bingham Fluid in a Shallow Channel of Finite Width
,”
J. Fluid Mech.
,
431
(
1
), pp.
135
159
.10.1017/S0022112000003013
15.
Balmforth
,
N. J.
, and
Craster
,
R. V.
,
1999
, “
A Consistent Thin-Layer Theory for Bingham Plastics
,”
J. Non-Newtonian Fluid Mech.
,
84
(
1
), pp.
65
81
.10.1016/S0377-0257(98)00133-5
16.
Balmforth
,
N. J.
,
Craster
,
R. V.
, and
Sassi
,
R.
,
2002
, “
Shallow Viscoplastic Flow on an Inclined Plane
,”
J. Fluid Mech.
,
470
, pp.
1
29
.10.1017/S0022112002001660
17.
Huang
,
X.
, and
Garcia
,
M. H.
,
1998
, “
A Herschel-Bulkley Model for Mud Flow Down a Slope
,”
J. Fluid Mech.
,
374
(
1
), pp.
305
333
.10.1017/S0022112098002845
18.
Balmforth
,
N.
,
Burbidge
,
A. S.
,
Craster
,
R. V.
,
Salzig
,
J.
, and
Shen
,
A.
,
2000
, “
Visco-Plastic Models of Isothermal Lava Domes
,”
J. Fluid Mech.
,
403
, pp.
37
65
.10.1017/S0022112099006916
19.
Nguetchue
,
S. N. N.
, and
Momoniat
,
E.
,
2008
, “
Axisymmetric Spreading of a Thin Power-Law Fluid Under Gravity on a Horizontal Plane
,”
Nonlinear Dyn.
,
52
(
4
), pp.
361
366
.10.1007/s11071-007-9284-4
20.
Pascal
,
H.
,
1991
, “
Gravity Flow of a Non-Newtonian Fluid Sheet on an Inclined Plane
,”
Int. J. Eng. Sci.
,
29
(
10
), pp.
1307
1313
.10.1016/0020-7225(91)90035-2
21.
Gorodtsov
, V
. A.
,
1990
, “
Spreading of a Film of Nonlinearly Viscous Liquid Over a Horizontal Smooth Solid Surface
,”
J. Eng. Phys. Thermophys.
,
57
(
2
), pp.
879
884
.10.1007/BF00871771
22.
Perazzo
,
C. A.
, and
Gratton
,
J.
,
2003
, “
Thin Film of Non-Newtonian Fluid on an Incline
,”
Phys. Rev. E
,
67
(
1
), p. 016307.10.1103/PhysRevE.67.016307
23.
Perazzo
,
C. A.
, and
Gratton
,
J.
,
2004
, “
Steady and Traveling Flows of a Power-Law Liquid Over an Incline
,”
J. Non-Newtonian Fluid Mech.
,
118
(
1
), pp.
57
64
.10.1016/j.jnnfm.2004.02.003
24.
Haeri
,
S.
, and
Hashemabadi
,
S. H.
,
2008
, “
Three Dimensional CFD Simulation and Experimental Study of Power Law Fluid Spreading on Inclined Plates
,”
Int. Commun. Heat Mass Transfer
,
35
(
8
), pp.
1041
1047
.10.1016/j.icheatmasstransfer.2008.04.003
25.
Kieweg
,
S. L.
,
2005
, “
Mechanical Analysis of Vaginal Gels Intended for Microbicide Application
,” Ph.D. thesis, Duke University, Durham, NC.
26.
Schwartz
,
L. W.
, and
Eley
,
R. R.
,
2002
, “
Flow of Architectural Coatings on Complex Surfaces; Theory and Experiment
,”
J. Eng. Math.
,
43
(
2–4
), pp.
153
171
.10.1023/A:1020372421178
27.
Gonzalez
,
A. G.
,
Diez
,
J.
,
Gomba
,
J.
,
Gratton
,
R.
, and
Kondic
,
L.
,
2004
, “
Spreading of a Thin Two-Dimensional Strip of Fluid on a Vertical Plane: Experiments and Modeling
,”
Phys. Rev. E
,
70
(
2
), p.
026309
.10.1103/PhysRevE.70.026309
28.
Thomas
,
L.
,
Gratton
,
R.
,
Marino
,
B.
,
Betelu
,
S.
,
Diez
,
J.
, and
Simon
,
J.
,
1996
, “
Measurement of the Slope of an Unsteady Liquid Surface Along a Line by an Anamorphic Schlieren System
,”
Measure. Sci. Technol.
,
7
(
8
), pp.
1134
1139
.10.1088/0957-0233/7/8/008
29.
Lan
,
H.
,
Wegener
,
J. L.
,
Armaly
,
B. F.
, and
Drallmeier
,
J. A.
,
2010
, “
Developing Laminar Gravity-Driven Thin Liquid Film Flow Down an Inclined Plane
,”
ASME J. Fluids Eng.
,
132
(
8
), p.
081301
.10.1115/1.4002109
30.
Johnson
,
M. F. G.
,
Schluter
,
R. A.
, and
Bankoff
,
S. G.
,
1997
, “
Fluorescent Imaging System for Global Measurement of Liquid Film Thickness and Dynamic Contact Angle in Free Surface Flows
,”
Rev. Sci. Instrum.
,
68
(
11
), pp.
4097
4102
.10.1063/1.1148352
31.
Johnson
,
M. F. G.
,
Schluter
,
R. A.
,
Miksis
,
M. J.
, and
Bankoff
,
S. G.
,
1999
, “
Experimental Study of Rivulet Formation on an Inclined Plate by Fluorescent Imaging
,”
J. Fluid Mech.
,
394
, pp.
339
354
.10.1017/S0022112099005765
32.
Acheson
,
D. J.
,
1990
,
Elementary Fluid Dynamics
,
Oxford University Press
,
Oxford
.
33.
Macosko
,
C. W.
,
1994
,
Rheology: Principles, Measurements and Applications
,
Wiley/VCH
,
Poughkeepsie, NY
.
34.
Diez
,
J. A.
, and
Kondic
,
L.
,
2002
, “
Computing Three-Dimensional Thin Film Flows Including Contact Lines
,”
J. Comput. Phys.
,
183
(
1
), pp.
274
306
.10.1006/jcph.2002.7197
35.
Kondic
,
L.
, and
Diez
,
J.
,
2001
, “
Pattern Formation in the Flow of Thin Films Down an Incline: Constant Flux Configuration
,”
Phys. Fluids
,
13
(
11
), pp.
3168
3184
.10.1063/1.1409965
36.
Kondic
,
L.
,
2003
, “
Instabilities in Gravity Driven Flow of Thin Fluid Films
,”
Siam Rev.
,
45
(
1
), pp.
95
115
.10.1137/S003614450240135
37.
Diez
,
J. A.
,
Kondic
,
L.
, and
Bertozzi
,
A.
,
2001
, “
Global Models for Moving Contact Lines
,”
Phys. Rev. E
,
63
(
1
), p.
011208
.10.1103/PhysRevE.63.011208
38.
Lin
,
T. S.
,
Kondic
,
L.
, and
Filippov
,
A.
,
2012
, “
Thin Films Flowing Down Inverted Substrates: Three-Dimensional Flow
,”
Phys. Fluids
,
24
(
2
), p.
022105
.10.1063/1.3682001
39.
Huppert
,
H. E.
,
1982
, “
Flow and Instability of a Viscous Current Down a Slope
,”
Nature
,
300
(
5891
), pp.
427
429
.10.1038/300427a0
40.
Gomba
,
J. M.
,
2012
, “
Thin-Film Flows With Moving Contact Lines: An Approach to Reducing Computing Time
,”
Phys. Rev. E
,
85
(
5
), p.
056701
.10.1103/PhysRevE.85.056701
41.
Gratton
,
J.
,
Minotti
,
F.
, and
Mahajan
,
S. M.
,
1999
, “
Theory of Creeping Gravity Currents of a Non-Newtonian Liquid
,”
Phys. Rev. E
,
60
(
6
), pp.
6960
6967
.10.1103/PhysRevE.60.6960
42.
Khayat
,
R. E.
,
2000
, “
Transient Free-Surface Flow Inside Thin Cavities of Viscoelastic Fluids
,”
J. Non-Newtonian Fluid Mech.
,
91
(
1
), pp.
15
29
.10.1016/S0377-0257(99)00089-0
43.
Jerrett
,
J. M.
, and
Debruyn
,
J. R.
,
1992
, “
Fingering Instability of a Gravitationally Driven Contact Line
,”
Phys. Fluids A
,
4
(
2
), pp.
234
242
.10.1063/1.858351
44.
Myers
,
T. G.
,
1998
, “
Thin Films With High Surface Tension
,”
SIAM Rev.
,
40
, pp.
441
462
.10.1137/S003614459529284X
45.
Mahalingam
,
A.
,
Simmons
,
A. P.
,
Ugaonkar
,
S. R.
,
Watson
,
K. M.
,
Dezzutti
,
C. S.
,
Rohan
,
L. C.
,
Buckheit
,
R. W.
, and
Kiser
,
P. F.
,
2011
, “
Vaginal Microbicide Gel for Delivery of Iqp-0528, a Pyrimidinedione Analog With a Dual Mechanism of Action Against HIV-1
,”
Antimicrobial Agents Chemotherapy
,
55
(
4
), pp.
1650
1660
.10.1128/AAC.01368-10
You do not currently have access to this content.