Research suggests that the knee joint may be dependent on an individual muscle's translational stiffness (KT) of the surrounding musculature to prevent or compensate for ligament tearing. Our primary goal was to develop an equation that calculates KT. We successfully derived such an equation that requires as input: a muscle's coordinates, force, and stiffness acting along its line of action. This equation can also be used to estimate the total joint muscular KT, in three orthogonal axes (AP: anterior-posterior; SI: superior-inferior; ML: medial-lateral), by summating individual muscle KT contributions for each axis. We then compared the estimates of our equation, using a commonly used knee model as input, to experimental data. Our total muscular KT predictions (44.0 N/mm), along the anterior/posterior axis (AP), matched the experimental data (52.2 N/mm) and was well within the expected variability (22.6 N/mm). We then estimated the total and individual muscular KT in two postures (0 deg and 90 deg of knee flexion), with muscles mathematically set to full activation. For both postures, total muscular KT was greatest along the SI-axis. The extensors provided the greatest KT for each posture and axis. Finally, we performed a sensitivity analysis to explore the influence of each input on the equation. It was found that pennation angle had the largest effect on SI KT, while muscle line of action coordinates largely influenced AP and ML muscular KT. This equation can be easily embedded within biomechanical models to calculate the individual and total muscular KT for any joint.

References

References
1.
Beillas
,
P.
,
Papaioannou
,
G.
,
Tashman
,
S.
, and
Yang
,
K. H.
,
2004
, “
A New Method to Investigate In Vivo Knee Behavior Using a Finite Element Model of the Lower Limb
,”
J. Biomech.
,
37
, pp.
1019
1030
.10.1016/j.jbiomech.2003.11.022
2.
Panjabi
,
M. M.
,
1992
, “
The Stabilizing System of the Spine. Part 1. Function, Dysfunction, Adaptation, and Enhancement
,”
J. Spinal Disord.
,
5
, pp.
383
389
.10.1097/00002517-199212000-00001
3.
Solomonow
,
M.
,
Baratta
,
R.
,
Zhou
,
B. H.
,
Shoji
,
H.
,
Bose
,
W.
,
Beck
,
C.
, and
D’Ambrosia
,
R.
,
1987
, “
The Synergistic Action of the Anterior Cruciate Ligament and Thigh Muscles in Maintaining Joint Stability
,”
Am. J. Sport Med.
,
15
(
3
), pp.
207
213
.10.1177/036354658701500302
4.
Tagesson
,
S.
,
Oberg
,
B.
, and
Kvist
,
J.
,
2010
, “
Tibial Translation and Muscle Activation During Rehabilitation Exercises 5 Weeks After Anterior Cruciate Ligament Reconstruction
,”
Scand. J. Med. Sci. Spor.
,
20
, pp.
154
164
.10.1111/j.1600-0838.2009.00903.x
5.
Eager
,
P.
,
Hull
,
M. L.
, and
Howell
,
S. M.
,
2001
, “
A Method for Quantifying the Anterior Load-Displacement Behavior of the Human Knee in Both the Low and High Stiffness Regions
,”
J. Biomech.
,
34
, pp.
1655
1660
.10.1016/S0021-9290(01)00142-7
6.
Hurd
,
W. J.
, and
Snyder-Mackler
,
L.
,
2007
, “
Knee Instability After Acute ACL-Rupture Affects Movement Patterns During the Mid-Stance Phase of Gait
,”
J. Orthop. Res.
,
25
(
10
), pp.
1369
1377
.10.1002/jor.20440
7.
Torry
,
M. R.
,
Decker
,
M. J.
,
Ellis
,
H. B.
,
Shelburne
,
K. B.
,
Sterett
,
W. I.
, and
Steadman
,
J. R.
,
2004
, “
Mechanisms of Compensating for Anterior Cruciate Ligament Deficiency During Gait
,”
Med. Sci. Sport Exer.
,
36
(
8
), pp.
1403
1412
.10.1249/01.MSS.0000135797.09291.71
8.
Dyhre-Poulsen
,
P.
, and
Krogsgaard
,
M. R.
,
2000
, “
Muscular Reflexes Elicited by Electrical Stimulation of the Anterior Cruciate Ligament Injury
,”
Am. J. Sport Med.
,
32
, pp.
477
483
.
9.
Solomonow
,
M.
, and
Krogsgaard
,
M.
,
2001
, “
Sensorimotor Control of Knee Stability. A Review
,”
Scand. J. Med. Sci. Spor.
,
11
, pp.
64
80
.10.1034/j.1600-0838.2001.011002064.x
10.
Bergmark
,
A.
,
1989
, “
Stability of the Lumbar Spine: A Study in Mechanical Engineering
,”
Acta Orthop. Scand. Suppl.
,
230
, pp.
1
54
.
11.
Cholewicki
,
J.
, and
McGill
,
S. M.
,
1996
, “
Mechanical Stability of the In Vivo Lumbar Spine: Implications for Injury and Chronic Low Back Pain
,”
Clin. Biomech.
,
11
, pp.
1
15
.10.1016/0268-0033(95)00035-6
12.
Hogan
,
N.
,
1984
, “
Adaptive Control of Mechanical Impedance by Coactivation of Antagonist Muscles
,”
IEEE Trans. Automat. Control
,
29
(
8
), pp.
681
690
.10.1109/TAC.1984.1103644
13.
Cashaback
,
J. G. A.
, and
Potvin
,
J. R.
,
2012
, “
Knee Muscle Contributions to Joint Rotational Stiffness
,”
Hum. Mov. Sci.
,
31
(
1
), pp.
118
128
.10.1016/j.humov.2010.12.005
14.
Potvin
,
J. R.
, and
Brown
,
S. H. M.
,
2005
, “
An Equation to Calculate Individual Muscle Contributions to Joint Stability
,”
J. Biomech.
,
38
, pp.
973
980
.10.1016/j.jbiomech.2004.06.004
15.
Oosterom
,
R.
,
Herder
,
J. L.
,
van der Helm
,
F. C. T.
,
Swieszkowski
,
W.
, and
Bersee
,
H. E. N.
,
2003
, “
Translational Stiffness of the Replaced Shoulder Joint
,”
J. Biomech.
,
36
, pp.
1897
1907
.10.1016/S0021-9290(03)00192-1
16.
Delp
,
S. L.
,
Loan
,
J. P.
,
Hoy
,
M. G.
,
Zajac
,
F. E.
,
Topp
,
E. L.
, and
Rosen
,
J. M.
,
1990
, “
An Interactive Graphics-Based Model of the Lower-Extremity to Study Orthopedic Surgical-Procedures
,”
IEEE Trans. Biomed. Eng.
,
37
, pp.
757
767
.10.1109/10.102791
17.
Brand
,
R. A.
,
Crowninshield
,
R. D.
,
Wittstock
,
C. E.
,
Pedersen
,
D. R.
,
Clark
,
C. R.
, and
van Krieken
,
F. M.
,
1982
, “
A Model of Lower Extremity Muscular Anatomy
,”
ASME, J. Biomech. Eng.
,
104
(
4
), pp.
304
310
.10.1115/1.3138363
18.
Ward
,
S. R.
,
Eng
,
C. M.
,
Smallwood
,
L. H.
, and
Lieber
,
R. L.
,
2009
, “
Are Current Measurements of Lower Extremity Muscle Architecture Accurate?
,”
Clin. Orthop. Relat. R.
,
467
(
4
), pp.
1074
1082
.10.1007/s11999-008-0594-8
19.
Cannon
,
S. C.
, and
Zahalak
,
G. I.
,
1982
, “
The Mechanical Behavior of Active Human Skeletal Muscle in Small Oscillations
,”
J. Biomech.
,
15
(
2
), pp.
111
121
.10.1016/0021-9290(82)90043-4
20.
Gardner-Morse
,
M.
,
Stokes
,
I. A. F.
, and
Laible
,
J. P.
,
1995
, “
Role of Muscles in Lumbar Spine Stability in Maximum Extension Efforts
,”
J. Orthop. Res.
,
13
, pp.
802
808
.10.1002/jor.1100130521
21.
Arnold
,
E. M.
,
Ward
,
S. R.
,
Lieber
,
R. L.
, and
Delp
,
S. L.
,
2010
, “
A Model of the Lower Limb for Analysis of Human Movement
,”
Ann. Biomed. Eng.
,
38
(
2
), pp.
269
279
.10.1007/s10439-009-9852-5
22.
Powell
,
P. L.
,
Roy
,
R. R.
,
Kanim
,
P.
,
Bello
,
M. A.
, and
Edgerton
, V
. R.
,
1984
, “
Predictability of Skeletal Muscle Tension From Architectural Determinations in Guinea Pig Hindlimbs
,”
J. Appl. Physiol.
,
57
, pp.
1715
1721
.
23.
Zajac
,
F. E.
,
1989
, “
Muscle and Tendon: Properties, Models, Scaling, and Application to Biomechanics and Motor Control
,”
Crit. Rev. Biomed. Eng.
17
, pp.
359
411
.
24.
Crisco
,
J. J.
, III
, and
Panjabi
,
M. M.
,
1991
, “
The Intersegmental and Multisegmental Muscles of the Lumbar Spine. A Biomechanical Model Comparing Lateral Stabilizing Potential
,”
Spine
,
16
(
7
), pp.
793
799
.10.1097/00007632-199107000-00018
25.
Wu
,
G.
, and
Cavanagh
,
P.
,
1995
, “
ISB Recommendation for Standardization in the Reporting of Kinematics Data
,”
J. Biomech.
,
28
(
10
), pp.
1257
1261
.10.1016/0021-9290(95)00017-C
26.
Wojtys
,
E. M.
,
Ashton-Miller
,
J. A.
, and
Huston
,
L.
,
2002
, “
A Gender-Related Difference in the Contribution of the Knee Musculature to Sagittal-Plane Shear Stiffness in Subjects With Similar Knee Laxity
,”
J. Bone. Joint. Surg.
,
84-A
(
1
), pp.
10
16
.
27.
Yu
,
B.
, and
Garrett
,
W. E.
,
2007
, “
Mechanisms of Non-Contact ACL Injuries
,”
Brit. J. Sport Med.
,
41
, pp.
i47
i51
.10.1136/bjsm.2007.037192
28.
Brown
,
S. H. M.
, and
Potvin
,
J. R.
,
2007
, “
Exploring the Geometric and Mechanical Characteristics of the Spine Musculature to Provide Rotational Stiffness to Two Spine Joints in the Neutral Posture
,”
Hum. Mov. Sci.
,
26
, pp.
113
123
.10.1016/j.humov.2006.09.006
29.
Chapra
,
S. C.
, and
Canale
,
R. P.
,
2010
,
Numerical Methods for Engineers
,
6th ed.
,
McGraw-Hill
,
New York
.
30.
Coleman
,
H. W.
, and
Steele
,
E. G.
,
1999
,
Experimentation and Uncertainty Analysis for Engineers
,
2nd ed.
,
Wiley & Sons
,
New York
.
31.
Duda
,
G. N.
,
Brand
,
D.
,
Freitag
,
S.
,
Lierse
,
W.
, and
Schneider
,
E.
,
1996
, “
Variability of Femoral Muscle Attachments
,”
J. Biomech.
,
29
(
9
), pp.
1185
1190
.10.1016/0021-9290(96)00025-5
32.
Fleming
,
B. C.
,
Renstrom
,
P. A.
,
Beynnon
,
B. D.
,
Engstrom
,
B.
,
Peura
,
G. D.
,
Badger
,
G. J.
, and
Johnson
,
R. J.
,
2001
, “
The Effect of Weightbearing and External Loading on Anterior Cruciate Ligament Strain
,”
J. Biomech.
,
3
, pp.
163
170
.10.1016/S0021-9290(00)00154-8
33.
Lo
,
J.
,
Muller
,
O.
,
Wunschel
,
M.
,
Bauer
,
S.
, and
Wulker
,
N.
,
2008
, “
Forces in Anterior Cruciate Ligament During Simulated Weight-Bearing Flexion With Anterior and Internal Rotational Tibial Load
,”
J. Biomech.
,
41
, pp.
1855
1861
.10.1016/j.jbiomech.2008.04.010
34.
Amis
,
A. A.
, and
Dawkins
,
G. P. C.
,
1991
, “
Functional Anatomy of the Anterior Cruciate Ligament
,”
J. Bone Joint Surg.
,
73-B
, pp.
260
267
.
35.
Crowninshield
,
M. H.
,
Pope
,
M. H.
, and
Johnson
,
R. J.
,
1976
, “
An Analytical Model of the Knee
,”
J. Biomech.
,
9
, pp.
397
405
.10.1016/0021-9290(76)90117-2
36.
Fleming
,
B. C.
,
Beynnon
,
B. D.
,
Nichols
,
R. J.
,
Johnson
,
R. J.
, and
Pope
,
M. H.
,
1993
, “
An In Vivo Comparison of Anterior Tibial Translation and Strain in the Anteromedial Band of the Anterior Cruciate Ligament
,”
J. Biomech.
,
26
(
1
), pp.
51
58
.10.1016/0021-9290(93)90612-I
37.
Kellis
,
E.
, and
Baltzopoulos
, V
.
,
1999
, “
The Effects of the Antagonist Muscle Force on Intersegmental Loading During Isokinetic Efforts of the Knee Extensors
,”
J. Biomech.
,
32
, pp.
19
25
.10.1016/S0021-9290(98)00131-6
38.
Shelburne
,
K. B.
,
Pandy
,
M. G.
,
Anderson
,
F. C.
, and
Torry
,
M. R.
,
2004
, “
Pattern of Anterior Cruciate Ligament Force in Normal Walking
,”
J. Biomech.
,
37
, pp.
797
805
.10.1016/j.jbiomech.2003.10.010
39.
Torzilli
,
P. A.
,
Deng
,
X.
, and
Warren
,
R. F.
,
1994
, “
The Effect of Joint-Compressive Load and Quadriceps Muscle Force on Knee Motion in the Intact and anterior Cruciate Ligament-Sectioned Knee
,”
Am. J. Sport Med.
,
22
(
1
), pp.
105
112
.10.1177/036354659402200117
40.
Yack
,
H. J.
,
Riley
,
L. M.
, and
Whieldon
,
T.R.
,
1994
, “
Anterior Tibial Translation During Progressive Loading of the ACL-Deficient Knee During Weight-Bearing and Nonweight-Bearing Isometric Exercise
,”
J. Orthop. Sport Phys.
,
20
(
5
), pp.
247
253
.
41.
Olmstead
,
T. G.
,
Wevers
,
H. W.
,
Bryan
,
J. T.
, and
Gouw
,
G. J.
,
1986
, “
Effect of Muscular Activity on Valgus/Varus Laxity and Stiffness of the Knee
,”
J. Biomech.
,
19
(
8
), pp.
565
577
.10.1016/0021-9290(86)90162-4
42.
Hashemi
,
J.
,
Chandrashekar
,
N.
,
Gill
,
B.
,
Beynnon
,
B. D.
,
Slauterbeck
,
J. R.
,
Schutt
,
R. C.
,
Mansouri
,
H.
, and
Dabezies
,
E.
,
2008
, “
The Geometry of the Tibial Plateau and its Influence on the Biomechanics of the Tibiofemoral Joint
,”
J. Bone Joint Surg.
,
90
, pp.
2724
2734
.10.2106/JBJS.G.01358
43.
Hashemi
,
J.
,
Chandrashekar
,
N.
,
Mansouri
,
H.
,
Gill
,
B.
,
Beynnon
,
B. D.
,
Slauterbeck
,
J. R.
,
Schutt
,
R. C.
,
Dabezies
,
E.
, and
Beynnon
,
B. D.
,
2010
, “
Shallow Medial Tibial Plateau and Steep Medial and Lateral Tibial Slopes
,”
Am. J. Sport Med.
,
38
(
1
), pp.
54
62
.10.1177/0363546509349055
44.
Rutherford
,
O. M.
, and
Jones
,
D. A.
,
1992
, “
Measurement of Fibre Pennation Using Ultrasound in the Human Quadriceps In Vivo
,”
Eur. J. Appl. Physiol. O.
,
65
(
5
), pp.
433
437
.10.1007/BF00243510
45.
Renstrom
,
P.
,
Ljungqvist
,
A.
,
Arendt
,
E.
,
Beynnon
,
B.
,
Fukubayashi
,
T.
,
Garrett
,
W.
,
Georgoulis
,
T.
,
Hewett
,
T. E.
,
Johnson
,
R.
,
Krosshaug
,
T.
,
Mandelbaum
,
B.
,
Micheli
,
L.
,
Myklebust
,
G.
,
Roos
,
E.
,
Roos
,
H.
,
Schamasch
,
P.
,
Shultz
,
S.
,
Werner
,
S.
,
Wojtys
,
E.
, and
Engebretsen
,
L.
,
2008
, “
Non-Contact ACL Injuries in Female Athletes: An International Olympic Committee Current Concepts Statement
,”
Br. J. Sports Med.
,
42
, pp.
394
412
.10.1136/bjsm.2008.048934
46.
Zeinali-Davarani
,
S.
,
Hemami
,
H.
,
Barin
,
K.
,
Shirazi-Adl
,
A.
, and
Parnianpour
,
M.
,
2008
, “
Dynamic Stability of Spine Using Stability-Based Optimization and Muscle Spindle Reflex
,”
IEEE Trans. Neur. Sys. Reh.
16
, pp.
106
118
.10.1109/TNSRE.2007.906963
47.
Ma
,
S.-P.
, and
Zahalak
,
G. L.
,
1991
, “
A Distribution-Moment Model of Energetics in Skeletal Muscle
,”
J. Biomech.
,
24
, pp.
21
35
.10.1016/0021-9290(91)90323-F
48.
Zahalak
,
G. I.
,
1981
, “
A Distribution-Moment Approximation for Kinetic Theories of Muscular Contraction
,”
Math. Biosci.
,
55
, pp.
89
114
.10.1016/0025-5564(81)90014-6
You do not currently have access to this content.