Repeated flexion and extension of an intervertebral disc has been shown to affect the angular stiffness of spinal motion segments and is a barometer of the mechanical integrity of the disc. A degenerated disc that loses height causes higher levels of stress on the annulus and facet joints which may increase its level of degeneration; restoring disc height may therefore help to slow this degenerative cascade. Previous research has indicated that nucleus implants have the potential to improve the mechanical characteristics of a disc and an implant that is custom-fit to the intervertebral disc yields the best results with respect to decreasing annular degeneration. Two groups of porcine spinal motion segments were exposed to repeated flexion and extension. One group was then injected with a novel hydrogel while the other group was used as a control. Both groups were then exposed to another round of cyclic flexion and extension to examine the effect that the hydrogel had on restoring the original mechanics to the motion segments. Angular stiffness was restored to the group which received the hydrogel injection in addition to a significant improvement in specimen height. No significant changes were seen in the group which did not receive an injection. It would appear that use of the novel injectable hydrogel is able to restore angular stiffness to cyclically fatigued spinal motion segments. It is also important to note that continued repetition of the event causing specimen fatigue after performing hydrogel injection will result in an eventual return to the same fatigued state.

References

References
1.
Callaghan
,
J. P.
, and
McGill
,
S. M.
,
2001
, “
Intervertebral Disc Herniation: Studies on a Porcine Model Exposed to Highly Repetitive Flexion/Extension Motion With Compressive Force
,”
Clin. Biomech. (Bristol, Avon)
,
16
(
1
), pp.
28
37
.10.1016/S0268-0033(00)00063-2
2.
Tampier
,
C.
,
Drake
,
J. D.
,
Callaghan
,
J. P.
, and
McGill
,
S. M.
,
2007
, “
Progressive Disc Herniation: An Investigation of the Mechanism Using Radiologic, Histochemical, and Microscopic Dissection Techniques on a Porcine Model
,”
Spine
,
32
(
25
), pp.
2869
2874
.10.1097/BRS.0b013e31815b64f5
3.
Yates
,
J. P.
,
Giangregorio
,
L.
, and
McGill
,
S. M.
,
2010
, “
The Influence of Intervertebral Disc Shape on the Pathway of Posterior/Posterolateral Partial Herniation
,”
Spine
,
35
(
7
), pp.
734
739
.10.1097/BRS.0b013e3181ba3a60
4.
Kirkaldy-Willis
,
W. H.
,
Wedge
,
J. H.
,
Yong-Hing
,
K.
, and
Reilly
,
J.
,
1978
, “
Pathology and Pathogenesis of Lumbar Spondylosis and Stenosis
,”
Spine
,
3
(
4
), pp.
319
328
.10.1097/00007632-197812000-00004
5.
Arbit
,
E.
, and
Pannullo
,
S.
,
2001
, “
Lumbar Stenosis: A Clinical Review
,”
Clin. Orthop. Relat. Res.
,
384
, pp.
137
143
.10.1097/00003086-200103000-00016
6.
Vernengo
,
J.
,
Fussell
,
G. W.
,
Smith
,
N. G.
, and
Lowman
,
A. M.
,
2008
, “
Evaluation of Novel Injectable Hydrogels for Nucleus Pulposus Replacement
,”
J. Biomed. Mater. Res., Part B: Appl. Biomater.
,
84
(
1
), pp.
64
69
.10.1002/jbm.b.30844
7.
Klara
,
P. M.
, and
Ray
,
C. D.
,
2002
, “
Artificial Nucleus Replacement: Clinical Experience
,”
Spine
,
27
(
12
), pp.
1374
1377
.10.1097/00007632-200206150-00022
8.
Adams
,
M. A.
,
Stefanakis
,
M.
, and
Dolan
,
P.
,
2010
, “
Healing of a Painful Intervertebral Disc Should Not Be Confused With Reversing Disc Degeneration: Implications for Physical Therapies for Discogenic Back Pain
,”
Clin. Biomech.
,
25
(
10
), pp.
961
971
.10.1016/j.clinbiomech.2010.07.016
9.
Adams
,
M. A.
,
McNally
,
D. S.
, and
Dolan
,
P.
,
1996
, “
‘Stress’ Distributions Inside Intervertebral Discs. The Effects of Age and Degeneration
,”
J. Bone Jt. Surg., Br.
78
(
6
), pp.
965
972
.10.1302/0301-620X78B6.1287
10.
Meakin
,
J. R.
,
Reid
,
J. E.
, and
Hukins
,
D. W.
,
2001
, “
Replacing the Nucleus Pulposus of the Intervertebral Disc
,”
Clin. Biomech.
,
16
(
7
), pp.
560
565
.10.1016/S0268-0033(01)00042-0
11.
Shim
,
C. S.
,
Lee
,
S. H.
,
Shin
,
H. D.
,
Kang
,
H. S.
,
Choi
,
W. C.
,
Jung
,
B.
,
Choi
,
G.
,
Ahn
,
Y.
,
Lee
,
S.
, and
Lee
,
H. Y.
,
2007
, “
Charite Versus Prodisc: A Comparative Study of a Minimum 3-Year Follow-Up
,”
Spine
,
32
(
9
), pp.
1012
1018
.10.1097/01.brs.0000260795.57798.a0
12.
Nerurkar
,
N. L.
,
Elliott
,
D. M.
, and
Mauck
,
R. L.
,
2010
, “
Mechanical Design Criteria for Intervertebral Disc Tissue Engineering
,”
J. Biomech.
,
43
(
6
), pp.
1017
1030
.10.1016/j.jbiomech.2009.12.001
13.
Bertagnoli
,
R.
,
Sabatino
,
C. T.
,
Edwards
,
J. T.
,
Gontarz
,
G. A.
,
Prewett
,
A.
, and
Parsons
,
J. R.
,
2005
, “
Mechanical Testing of a Novel Hydrogel Nucleus Replacement Implant
,”
Spine J.
,
5
(
6
), pp.
672
681
.10.1016/j.spinee.2004.12.004
14.
Dahl
,
M. C.
,
Ahrens
,
M.
,
Sherman
,
J. E.
, and
Martz
,
E. O.
,
2010
, “
The Restoration of Lumbar Intervertebral Disc Load Distribution: A Comparison of Three Nucleus Replacement Technologies
,”
Spine
,
35
(
15
), pp.
1445
1453
.10.1097/BRS.0b013e3181bef192
15.
Adams
,
M. A.
,
Freeman
,
B. J.
,
Morrison
,
H. P.
,
Nelson
,
I. W.
, and
Dolan
,
P.
,
2000
, “
Mechanical Initiation of Intervertebral Disc Degeneration
,”
Spine
,
25
(
13
), pp.
1625
1636
.10.1097/00007632-200007010-00005
16.
Galante
,
J. O.
,
1967
, “
Tensile Properties of the Human Lumbar Annulus Fibrosus
,”
Acta Orthop. Scand. Suppl.
,
100
, pp.
1
91
.
17.
Panjabi
,
M. M.
,
Duranceau
,
J. S.
,
Oxland
,
T. R.
, and
Bowen
,
C. E.
,
1989
, “
Multidirectional Instabilities of Traumatic Cervical Spine Injuries in a Porcine Model
,”
Spine
,
14
(
10
), pp.
1111
1115
.10.1097/00007632-198910000-00014
18.
Yingling
, V
. R.
,
Callaghan
,
J. P.
, and
McGill
,
S. M.
,
1999
, “
The Porcine Cervical Spine as a Model of the Human Lumbar Spine: An Anatomical, Geometric, and Functional Comparison
,”
J. Spinal Disord.
,
12
(
5
), pp.
415
423
.
19.
Andersson
,
G. B.
, and
Schultz
,
A. B.
,
1979
, “
Effects of Fluid Injection on Mechanical Properties of Intervertebral Discs
,”
J. Biomech.
,
12
(
6
), pp.
453
458
.10.1016/0021-9290(79)90030-7
You do not currently have access to this content.