Blast waves generated in the field explosions impinge on the head-brain complex and induce mechanical pressure pulses in the brain resulting in traumatic brain injury. Severity of the brain injury (mild to moderate to severe) is dependent upon the magnitude and duration of the pressure pulse, which in turn depends on the intensity and duration of the oncoming blast wave. A fluid-filled cylinder is idealized to represent the head-brain complex in its simplest form; the cylinder is experimentally subjected to an air blast of Friedlander type, and the temporal variations of cylinder surface pressures and strains and fluid pressures are measured. Based on these measured data and results from computational simulations, the mechanical loading pathways from the external blast to the pressure field in the fluid are identified; it is hypothesized that the net loading at a given material point in the fluid comprises direct transmissive loads and deflection-induced indirect loads. Parametric studies show that the acoustic impedance mismatches between the cylinder and the contained fluid as well as the flexural rigidity of the cylinder determine the shape/intensity of pressure pulses in the fluid.

References

References
1.
Courtney
,
A. C.
, and
Courtney
,
M. W.
,
2009
, “
A Thoracic Mechanism of Mild Traumatic Brain Injury Due to Blast Pressure Waves
,”
Med. Hypotheses
,
72
(
1
), pp.
76
83
.10.1016/j.mehy.2008.08.015
2.
Cernak
,
I.
,
Wang
,
Z.
,
Jiang
,
J.
,
Bian
,
X.
, and
Savic
,
J.
,
2001
, “
Ultrastructural and Functional Characteristics of Blast Injury-Induced Neurotrauma
,”
J. Trauma
,
50
(
4
), pp.
695
706
.10.1097/00005373-200104000-00017
3.
Cernak
,
I.
,
Savic
,
J.
, and
Lazarov
,
A.
,
1997
, “
Relations Among Plasma Prolactin, Testosterone, and Injury Severity in War Casualties
,”
World J. Surg.
,
21
(
3
), pp.
240
246
.10.1007/s002689900223
4.
Cramer
,
F.
,
Paster
,
S.
, and
Stephenson
,
C.
,
1949
, “
Cerebral Injuries Due to Explosion Waves– ‘Cerebral Blast Concussion’ A Pathologic, Clinical and Electroencephalographic Study
,”
Arch. Neurol.
,
61
(
1
), pp.
1
20
.10.1001/archneurpsyc.1949.02310070007001
5.
Young
,
M. W.
,
1945
, “
Mechanics of Blast Injuries
,”
War Medicine
,
8
(
2
), pp.
73
81
.
6.
Stewart
,
O.
,
Russel
,
C.
, and
Cone
,
W.
,
1941
, “
Injury to the Central Nervous System by Blast
,”
The Lancet
,
237
(
6128
), pp.
172
174
.10.1016/S0140-6736(00)77531-3
7.
Rafaels
,
K.
,
Bass
,
C. R.
,
Salzar
,
R. S.
,
Panzer
,
M. B.
,
Woods
,
W.
,
Feldman
,
S.
,
Cummings
,
T.
, and
Capehart
,
B.
,
2011
, “
Survival Risk Assessment for Primary Blast Exposures to the Head
,”
J. Neurotrauma
,
28
(
11
), pp.
2319
2328
.10.1089/neu.2009.1207
8.
Cheng
,
J.
,
Gu
,
J.
,
Ma
,
Y.
,
Yang
,
T.
,
Kuang
,
Y.
,
Li
,
B.
, and
Kang
,
J.
,
2010
, “
Development of a Rat Model for Studying Blast-Induced Traumatic Brain Injury
,”
J. Neurol. Sci.
,
294
(
1–2
), pp.
23
28
.10.1016/j.jns.2010.04.010
9.
Long
,
J. B.
,
Bentley
,
T. L.
,
Wessner
,
K. A.
,
Cerone
,
C.
,
Sweeney
,
S.
, and
Bauman
,
R. A.
,
2009
, “
Blast Overpressure in Rats: Recreating a Battlefield Injury in the Laboratory
,”
J. Neurotrauma
,
26
(
6
), pp.
827
840
.10.1089/neu.2008.0748
10.
Chavko
,
M.
,
Koller
,
W. A.
,
Prusaczyk
,
W. K.
, and
Mccarron
,
R. M.
,
2007
, “
Measurement of Blast Wave by a Miniature Fiber Optic Pressure Transducer in the Rat Brain
,”
J. Neurosci. Methods
,
159
(
2
), pp.
277
281
.10.1016/j.jneumeth.2006.07.018
11.
Romba, J. J., and Martin, P.,
1961
, “The Propagation of Air Shock Waves on a Biophysical Model (No. TM-17-61),” Human Engineering Lab Aberdeen Proving Ground, Aberdeen, MD.
12.
Clemedson
,
C. J.
, and
Pettersson
,
H.
,
1956
, “
Propagation of a High Explosive Air Shock Wave through Different Parts of an Animal Body
,”
Am. J. Physiol.
,
184
(
1
), pp.
119
26
.
13.
Clemedson
,
C. J.
, and
Pettersson
,
H.
,
1953
, “
Genesis of Respiratory and Circulatory Changes in Blast Injury
,”
Am. J. Physiol.
,
174
(
2
), pp.
316
320
.
14.
Krohn
,
P.
,
Whitteridge
,
D.
, and
Zuckerman
,
S.
,
1941
, “
The Effect of Blast on the Heart and Head
,” UK Ministry of Home Security: Research and Experiments Department, Civil Defence Research Committee,
Report HO
,
195
(
11
), pp.
249
.
15.
Dal Cengio Leonardi
,
A.
,
Bir
,
C. A.
,
Ritzel
,
D. V.
, and
Vandevord
,
P. J.
,
2011
, “
Intracranial Pressure Increases During Exposure to a Shock Wave
,”
J. Neurotrauma
,
28
(
1
), pp.
85
94
.10.1089/neu.2010.1324
16.
Bolander
,
R.
,
Mathie
,
B.
,
Bir
,
C.
,
Ritzel
,
D.
, and
Vandevord
,
P.
,
2011
, “
Skull Flexure as a Contributing Factor in the Mechanism of Injury in the Rat When Exposed to a Shock Wave
,”
Ann. Biomed. Eng.
,
39
(
10
), pp.
2550
2559
.10.1007/s10439-011-0343-0
17.
Moss
,
W. C.
,
King
,
M. J.
, and
Blackman
,
E. G.
,
2009
, “
Skull Flexure From Blast Waves: A Mechanism for Brain Injury With Implications for Helmet Design
,”
Phys. Rev. Lett.
,
103
(
10
), pp.
108
702
.10.1103/PhysRevLett.103.108702
18.
Teasdale
,
G.
, and
Jennett
,
B.
,
1974
, “
Assessment of Coma and Impaired Consciousness: A Practical Scale
,”
The Lancet
,
304
(
7872
), pp.
81
84
.10.1016/S0140-6736(74)91639-0
19.
Chavko
,
M.
,
Watanabe
,
T.
,
Adeeb
,
S.
,
Lankasky
,
J.
,
Ahlers
,
S. T.
, and
Mccarron
,
R. M.
,
2011
, “
Relationship Between Orientation to a Blast and Pressure Wave Propagation Inside the Rat Brain
,”
J. Neurosci. Methods
,
195
(
1
), pp.
61
66
.10.1016/j.jneumeth.2010.11.019
20.
Bir
,
C.
,
2011
, “
Measuring Blast-Related Intracranial Pressure Within the Human Head
,” Final Report, U.S. Army Medical Research and Material Command, Award No. W81XWH-09-1-0498.
21.
Zhu
,
F.
,
Wagner
,
C.
,
Dal Cengio Leonardi
,
A.
,
Jin
,
X.
,
Vandevord
,
P.
,
Chou
,
C.
,
Yang
,
K. H.
, and
King
,
A. I.
,
2012
, “
Using a Gel/Plastic Surrogate to Study the Biomechanical Response of the Head Under Air Shock Loading: A Combined Experimental and Numerical Investigation
,”
Biomech. Model. Mechanobiol.
,
11
(
3–4
), pp.
341
353
.10.1007/s10237-011-0314-2
22.
Varas
,
J. M.
,
Philippens
,
M.
,
Meijer
,
S.
,
Van Den Berg
,
A.
,
Sibma
,
P.
,
Van Bree
,
J.
, and
De Vries
,
D.
,
2011
, “
Physics of IED Blast Shock Tube Simulations for mTBI Research
,”
Frontiers in Neurology
,
2
(58).10.3389/fneur.2011.00058
23.
Alley
,
M. D.
,
Schimizze
,
B. R.
, and
Son
,
S. F.
,
2011
, “
Experimental Modeling of Explosive Blast-Related Traumatic Brain Injuries
,”
NeuroImage
,
54
(
1
), pp.
S45
S54
.10.1016/j.neuroimage.2010.05.030
24.
Skotak
,
M.
,
Wang
,
F.
, and
Chandra
,
N.
,
2012
, “
An in vitro Injury Model for SH-SY5Y Neuroblastoma Cells: Effect of Strain and Strain Rate
,”
J. Neurosci. Methods
,
205
(
1
), pp.
159
168
.10.1016/j.jneumeth.2012.01.001
25.
Arun
,
P.
,
Spadaro
,
J.
,
John
,
J.
,
Gharavi
,
R. B.
,
Bentley
,
T. B.
, and
Nambiar
,
M. P.
,
2011
, “
Studies on Blast Traumatic Brain Injury Using In-Vitro Model With Shock Tube
,”
NeuroReport
,
22
(
8
), pp.
379
384
.10.1097/WNR.0b013e328346b138
26.
Sundaramurthy
,
A.
,
Alai
,
A.
,
Ganpule
,
S.
,
Holmberg
,
A.
,
Plougonven
,
E.
, and
Chandra
,
N.
,
2012
, “
Blast-Induced Biomechanical Loading of the Rat: An Experimental and Anatomically Accurate Computational Blast Injury Model
,”
J. Neurotrauma
,
29
(
13
), pp.
2352
2364
.10.1089/neu.2012.2413
27.
Kodama
,
T.
,
Hamblin
,
M. R.
, and
Doukas
,
A. G.
,
2000
, “
Cytoplasmic Molecular Delivery With Shock Waves: Importance of Impulse
,”
Biophys. J.
,
79
(
4
), pp.
1821
1832
.10.1016/S0006-3495(00)76432-0
28.
Suneson
,
A.
,
Hansson
,
H. A.
, and
Seeman
,
T.
,
1990
, “
Pressure Wave Injuries to the Nervous System Caused by High-Energy Missile Extremity Impact: Part I. Distant Effects on the Central Nervous System–A Light and Electron Microscopic Study on Pigs
,”
J. Trauma
,
30
(
3
), pp.
295
306
.10.1097/00005373-199003000-00007
29.
Taylor
,
P. A.
, and
Ford
,
C. C.
,
2009
, “
Simulation of Blast-Induced Early-Time Intracranial Wave Physics Leading to Traumatic Brain Injury
,”
ASME J. Biomech. Eng.
,
131
(
6
), p.
061007
.10.1115/1.3118765
30.
Cullis
,
I. G.
,
2001
, “
Blast Waves and How They Interact With Structures
,”
J.R. Army Med Corps
,
147
(
1
), pp.
16
26
.
31.
Zhang
,
L.
,
Yang
,
K. H.
, and
King
,
A. I.
,
2004
, “
A Proposed Injury Threshold for Mild Traumatic Brain Injury
,”
ASME J. Biomech. Eng.
,
126
(
2
), pp.
226
236
.10.1115/1.1691446
32.
Chen
,
X.
, and
Chandra
,
N.
,
2004
, “
The Effect of Heterogeneity on Plane Wave Propagation Through Layered Composites
,”
Compos. Sci. Technol.
,
64
(
10–11
), pp.
1477
1493
.10.1016/j.compscitech.2003.10.024
33.
Chen
,
X.
,
Chandra
,
N.
, and
Rajendran
,
A. M.
,
2004
, “
Analytical Solution to the Plate Impact Problem of Layered Heterogeneous Material Systems
,”
Int. J. Solids Struct.
,
41
(
16–17
), pp.
4635
4659
.10.1016/j.ijsolstr.2004.02.064
34.
Rahman
,
M. A.
, and
Rahman
,
A. S.
, eds.,
2005
,
Design Parameters of a Circular Proving Ring of Uniform Strength
, Proceedings of the International Conference on Mechanical Engineering 2005 (ICME2005), 28–30 December 2005,
Dhaka
, Bangladesh, pp.
1
5
. Available at http://www.buet.ac.bd/me/icme/icme2005/Proceedings/PDF/ICME05-AM-15.pdf
35.
Chandra
,
N.
,
Holmberg
,
A.
, and
Feng
,
R.
,
2011
, “
Controlling the Shape of the Shock Wave Profile in a Blast Facility
,” US Provisional Patent Application, 61542354.
36.
Ganpule
,
S.
,
Alai
,
A.
,
Plougonven
,
E.
, and
Chandra
,
N.
,
2012
, “
Mechanics of Blast Loading on the Head Models in the Study of Traumatic Brain Injury Using Experimental and Computational Approaches
,”
Biomech. Model. Mechanobiol.
10.1007/s10237-012-0421-8
37.
Chandra
,
N.
,
Ganpule
,
S.
,
Kleinschmit
,
N.
,
Feng
,
R.
,
Holmberg
,
A.
,
Sundaramurthy
,
A.
,
Selvan
,
V.
, and
Alai
,
A.
,
2012
, “
Evolution of Blast Wave Profiles in Simulated Air Blasts: Experiment and Computational Modeling
,”
Shock Waves
,
22
(
5
), pp.
403
415
.10.1007/s00193-012-0399-2
38.
Mowatt
,
S.
, and
Skews
,
B.
,
2011
, “
Three Dimensional Shock Wave/Boundary Layer Interactions
,”
Shock Waves
,
21
(
5
), pp.
467
482
.10.1007/s00193-011-0322-2
39.
Ganpule
,
S.
,
Gu
,
L.
,
Alai
,
A.
, and
Chandra
,
N.
,
2011
, “
Role of Helmet in the Mechanics of Shock Wave Propagation Under Blast Loading Conditions
,”
Comput. Methods Biomech. Biomed. Eng.
, 15(11), pp.
1
12
.
40.
Chafi
,
M. S.
,
Karami
,
G.
, and
Ziejewski
,
M.
,
2009
, “
Numerical Analysis of Blast-Induced Wave Propagation Using Fsi and Alemulti-Material Formulations
,”
Int. J. Impact Eng.
,
36
(
10–11
), pp.
1269
1275
.10.1016/j.ijimpeng.2009.03.007
41.
Honma
,
H.
,
Ishihara
,
M.
,
Yoshimura
,
T.
,
Maeno
,
K.
, and
Morioka
,
T.
,
2003
, “
Interferometric Ct Measurement of Three-Dimensional Flow Phenomena on Shock Waves and Vortices Discharged From Open Ends
,”
Shock Waves
,
13
(
3
), pp.
179
190
.10.1007/s00193-003-0206-1
42.
Fry
,
F. J.
, and
Barger
,
J. E.
,
1978
, “
Acoustical Properties of the Human Skull
,”
J. Acoust. Soc. Am.
,
63
(
5
), pp.
1576
1590
.10.1121/1.381852
43.
Ludwig
,
G. D.
,
1950
, “
The Velocity of Sound Through Tissues and the Acoustic Impedance of Tissues
,”
J. Acoust. Soc. Am.
,
22
(
6
), pp.
862
866
.10.1121/1.1906706
44.
Carlucci
,
P.
,
Mougeotte
,
C.
,
Recchia
,
S.
, and
Ji
,
H.
,
2010
, “
Novel Approach To Conducting Blast Load Analyses Using Abaqus/Explicit-CEL
,”
SIMULIA Customer Conference
.
45.
Ofengeim
,
D. K.
, and
Drikakis
,
D.
,
1997
, “
Simulation of Blast Wave Propagation Over a Cylinder
,”
Shock Waves
,
7
(
5
), pp.
305
317
.10.1007/s001930050085
46.
Anderson
,
J. D.
,
Fundamentals of Aerodynamics
(
McGraw-Hill
,
New York
,
2001
).
47.
Goggio
,
A. F.
,
1941
, “
The Mechanism of Contre-Coup Injury
,”
J. Neurol., Neurosurg. Psychiatry
,
4
(
1
), pp.
11
22
.10.1136/jnnp.4.1.11
48.
King
,
A. I.
,
2001
, “
Fundamentals of Impact Biomechanics: Part 2—Biomechanics of the Abdomen, Pelvis, and Lower Extremities
,”
Annu. Rev. Biomed. Eng.
,
3
, pp.
27
55
.10.1146/annurev.bioeng.3.1.27
49.
Narayan Yoganandan
,
P. D.
,
Frank
,
A.
,
Pintar
,
P. D.
, and
Sanford
,
J.
,
Larson
,
M. D.
, Ph.D.
,
Frontiers in Head and Neck Trauma: Clinical and Biomechanical
(
Medical College of Wisconsin
,
Milwaukee
,
1998
).
50.
Goeller
,
J.
,
Wardlaw
,
A.
,
Treichler
,
D.
,
O'bruba
,
J.
, and
Weiss
,
G.
,
2012
, “
Investigation of Cavitation as a Possible Traumatic Brain Injury (Tbi) Damage Mechanism From Blast
,”
J. Neurotrauma
, 29(10), pp. 1970–1981.
51.
Tamer El Sayed
,
A. M.
,
Fernando
,
F.
, and
Michael
,
O.
,
2008
, “
Biomechanics of Traumatic Brain Injury
,”
Comput. Methods Appl. Mech. Eng.
,
197
, pp.
4692
4701
.10.1016/j.cma.2008.06.006
52.
Skotak
,
M.
,
Wang
,
F.
,
Alai
,
A.
,
Holmberg
,
A.
,
Harris
,
S.
,
Switzer
,
R. C.
, III, and Chandra, N.,
2013
, “Rat Injury Model Under Controlled Field-Relevant Primary Blast Conditions: Acute Response to a Wide Range of Peak Overpressures,”
J. Neurotrauma
, (in press).10.1089/neu.2012.2652
53.
Ganpule
,
S.
,
Alai
,
A.
,
Salzar
,
R.
, and
Chandra
,
N.
,
2013
, “Intracranial Pressure Variations in a Post-Mortem Human Head Loaded by a Wide Range of Primary Blast Overpressures,” (in press).
You do not currently have access to this content.