The relationships between mechanical loads and bone microstructure are of interest to those who seek to predict bone mechanical properties from microstructure or to predict how organization of bone microstructure is driven by mechanical loads. While strains and displacements in the material are inherently responsible for mechanically caused changes in the appearance of the microstructure, it is the morphometric measures of microstructural organization that are often available for assessment of bone quality. Therefore, an understanding of how strain history is reflected in morphometric measures of bone microstructure has practical implications in that it may provide clinically measurable indices of mechanical history in bone and improve interpretation of bone mechanical properties from microstructural information. The objective of the current study was to examine changes in morphometric measures of cancellous bone microstructure in response to varying levels of continuum level strains. The experimental approach included stereologic analysis of microcomputed tomography (μCT) images of human cancellous bone samples obtained at sequentially increasing levels of strain in a custom-made loading apparatus mounted in a μCT scanner. We found that the degree of anisotropy (DA) decreased from baseline to failure and from failure to postfailure. DA partially recovered from postfailure levels upon unloading; however, the final DA was less than at failure and less than at baseline. We also found that average trabecular thickness (Tb.Th.Av) increased with displacements at postfailure and did not recover when unloaded. Average trabecular number decreased when the specimens were unloaded. In addition, the heterogeneity of Tb.Th as measured by intra-specimen standard deviation (Tb.Th.SD) increased and that of trabecular number (Tb.N.SD) decreased with displacements at postfailure. Furthermore, the intraspecimen coefficient of variation of trabecular number decreased at postfailure displacements but did not recover upon unloading. Finally, the coefficient of variation of trabecular separation at unload was less than that at baseline. These measures can be developed into image-based indices to estimate strain history, damage, and residual mechanical properties where direct analysis of stresses and strains, such as through finite element modeling, may not be feasible. It remains to be determined how wide a time interval can be used to estimate strain history before remodeling becomes an overriding effect on the trabecular architecture.

References

1.
Kleerekoper
,
M.
,
Villanueva
,
A. R.
,
Stanciu
,
J.
,
Rao
,
D. S.
, and
Parfitt
,
A. M.
,
1985
, “
The Role of Three-Dimensional Trabecular Microstructure in the Pathogenesis of Vertebral Compression Fractures
,”
Calcif. Tissue Int.
,
37
(
6
), pp.
594
597
.10.1007/BF02554913
2.
Snyder
,
B. D.
,
Piazza
,
S.
,
Edwards
,
W. T.
, and
Hayes
,
W. C.
,
1993
, “
Role of Trabecular Morphology in the Etiology of Age-Related Vertebral Fractures
,”
Calcif. Tissue Int.
,
53
,
S14
S22
.10.1007/BF01673396
3.
Goulet
,
R. W.
,
Goldstein
,
S. A.
,
Ciarelli
,
M. J.
,
Kuhn
,
J. L.
,
Brown
,
M. B.
, and
Feldkamp
,
L. A.
,
1994
, “
The Relationship Between the Structural and Orthogonal Compressive Properties of Trabecular Bone
,”
J. Biomech.
,
27
(
4
), pp.
375
389
.10.1016/0021-9290(94)90014-0
4.
Ciarelli
,
T. E.
,
Fyhrie
,
D. P.
,
Schaffler
,
M. B.
, and
Goldstein
,
S. A.
,
2000
, “
Variations in Three-Dimensional Cancellous Bone Architecture of the Proximal Femur in Female Hip Fractures and in Controls
,”
J. Bone Miner. Res.
,
15
(
1
), pp.
32
40
.10.1359/jbmr.2000.15.1.32
5.
Eswaran
,
S. K.
,
Gupta
,
A.
,
Adams
,
M. F.
, and
Keaveny
,
T. M.
,
2006
, “
Cortical and Trabecular Load Sharing in the Human Vertebral Body
,”
J. Bone Miner. Res.
,
21
(
2
), pp.
307
314
.10.1359/jbmr.2006.21.2.307
6.
Yeni
,
Y. N.
,
Zinno
,
M. J.
,
Yerramshetty
,
J. S.
,
Zauel
,
R.
, and
Fyhrie
,
D. P.
,
2011
, “
Variability of Trabecular Microstructure is Age-, Gender-, Race- and Anatomic Site-Dependent and Affects Stiffness and Stress Distribution Properties of Human Vertebral Cancellous Bone
,”
Bone
,
49
(
4
), pp.
886
894
.10.1016/j.bone.2011.07.006
7.
Parkinson
, I
. H.
,
Badiei
,
A.
,
Stauber
,
M.
,
Codrington
,
J.
,
Muller
,
R.
, and
Fazzalari
,
N. L.
,
2012
, “
Vertebral Body Bone Strength: The Contribution of Individual Trabecular Element Morphology
,”
Osteoporosis Int.
,
23
(
7
), pp.
1957
1965
.10.1007/s00198-011-1832-6
8.
Nazarian
,
A.
, and
Muller
,
R.
,
2004
, “
Time-Lapsed Microstructural Imaging of Bone Failure Behavior
,”
J. Biomech.
,
37
(
1
), pp.
55
65
.10.1016/S0021-9290(03)00254-9
9.
Tanck
,
E.
,
Bakker
,
A. D.
,
Kregting
,
S.
,
Cornelissen
,
B.
,
Klein-Nulend
,
J.
, and
Van Rietbergen
,
B.
,
2009
, “
Predictive Value of Femoral Head Heterogeneity for Fracture Risk
,”
Bone
,
44
(
4
), pp.
590
595
.10.1016/j.bone.2008.12.022
10.
Yeni
,
Y. N.
,
Kim
,
D. G.
,
Divine
,
G. W.
,
Johnson
,
E. M.
, and
Cody
,
D. D.
,
2009
, “
Human Cancellous Bone from T12-L1 Vertebrae has Unique Microstructural and Trabecular Shear Stress Properties
,”
Bone
,
44
(
1
), pp.
130
136
.10.1016/j.bone.2008.09.002
11.
Hussein
,
A. I.
, and
Morgan
,
E. F.
,
2013
, “
The Effect of Intravertebral Heterogeneity in Microstructure on Vertebral Strength and Failure Patterns
,”
Osteoporosis Int.
,
24
(
3
), pp.
979
989
.10.1007/s00198-012-2039-1
12.
Reimann
,
D. A.
,
Hames
,
S. M.
,
Flynn
,
M. J.
, and
Fyhrie
,
D. P.
,
1997
, “
A Cone Beam Computed Tomography System for True 3D Imaging of Specimens
,”
Appl. Radiat. Isot.
,
48
(
10–12
), pp.
1433
1436
.10.1016/S0969-8043(97)00139-5
13.
Bay
,
B. K.
,
Smith
,
T. S.
,
Fyhrie
,
D. P.
, and
Saad
,
M.
,
1999
, “
Digital Volume Correlation: Three-Dimensional Strain Mapping Using X-Ray Tomography
,”
Exp. Mech.
,
39
(
3
), pp.
217
226
.10.1007/BF02323555
14.
Kuhn
,
J. L.
,
Goldstein
,
S. A.
,
Feldkamp
,
L. A.
,
Goulet
,
R. W.
, and
Jesion
,
G.
,
1990
, “
Evaluation of a Microcomputed Tomography System to Study Trabecular Bone Structure
,”
J. Orthop. Res.
,
8
(
6
), pp.
833
842
.10.1002/jor.1100080608
15.
Hou
,
F. J.
,
Lang
,
S. M.
,
Hoshaw
,
S. J.
,
Reimann
,
D. A.
, and
Fyhrie
,
D. P.
,
1998
, “
Human Vertebral Body Apparent and Hard Tissue Stiffness
,”
J. Biomech.
,
31
(
11
), pp.
1009
1015
.10.1016/S0021-9290(98)00110-9
16.
Odgaard
,
A.
,
Kabel
,
J.
,
van Rietbergen
,
B.
,
Dalstra
,
M.
, and
Huiskes
,
R.
,
1997
, “
Fabric and Elastic Principal Directions of Cancellous Bone are Closely Related
,”
J. Biomech.
,
30
(
5
), pp.
487
495
.10.1016/S0021-9290(96)00177-7
17.
George
,
W. T.
, and
Vashishth
,
D.
,
2005
, “
Damage Mechanisms and Failure Modes of Cortical Bone Under Components of Physiological Loading
,”
J. Orthop. Res.
,
23
(
5
), pp.
1047
1053
.10.1016/j.orthres.2005.02.008
18.
Cousineau
,
D.
,
2005
, “
Confidence Intervals in Within-Subject Designs: A Simpler Solution to Loftus and Masson's Method
,”
Tutorials Quant. Methods Psychol.
,
1
(
1
), pp.
42
45
. Available at: http://www.tqmp.org/Content/vol01-1/p042/p042
19.
Yeh
,
O. C.
, and
Keaveny
,
T. M.
,
1999
, “
Biomechanical Effects of Intraspecimen Variations in Trabecular Architecture: A Three-Dimensional Finite Element Study
,”
Bone
,
25
(
2
), pp.
223
228
.10.1016/S8756-3282(99)00092-7
20.
Nekkanty
,
S.
,
Divine
,
G. W.
,
Flynn
,
M. J.
, and
Yeni
,
Y. N.
,
2011
, “
Digital Tomosynthesis-Based Textural Measures Predict Vertebral Strength
,”
Proceedings of the 57th Annual Meeting of the Orthopaedic Research Society
, Long Beach, CA, Jan. 13–16.
21.
Liu
,
L.
, and
Morgan
,
E. F.
,
2007
, “
Accuracy and Precision of Digital Volume Correlation in Quantifying Displacements and Strains in Trabecular Bone
,”
J. Biomech.
,
40
(
15
), pp.
3516
3520
.10.1016/j.jbiomech.2007.04.019
22.
Nakabayashi
,
Y.
,
Wevers
,
H. W.
,
Cooke
,
T. D.
, and
Griffin
,
M.
,
1994
, “
Bone Strength and Histomorphometry of the Distal Femur
,”
J. Arthroplasty
,
9
(
3
), pp.
307
315
.10.1016/0883-5403(94)90086-8
23.
Day
,
J. S.
,
Ding
,
M.
,
Odgaard
,
A.
,
Sumner
,
D. R.
,
Hvid
, I
.
, and
Weinans
,
H.
,
2000
, “
Parallel Plate Model for Trabecular Bone Exhibits Volume Fraction-Dependent Bias
,”
Bone
,
27
(
5
), pp.
715
720
.10.1016/S8756-3282(00)00371-9
24.
Beuf
,
O.
,
Ghosh
,
S.
,
Newitt
,
D. C.
,
Link
,
T. M.
,
Steinbach
,
L.
,
Ries
,
M.
,
Lane
,
N.
, and
Majumdar
,
S.
,
2002
, “
Magnetic Resonance Imaging of Normal and Osteoarthritic Trabecular Bone Structure in the Human Knee
,”
Arthritis Rheum.
,
46
(
2
), pp.
385
393
.10.1002/art.10108
25.
Dong
,
X. N.
,
Yeni
,
Y. N.
,
Zhang
,
B.
,
Les
,
C. M.
,
Gibson
,
G. J.
, and
Fyhrie
,
D. P.
,
2005
, “
Matrix Concentration of Insulin-Like Growth Factor I (IGF-I) is Negatively Associated With Biomechanical Properties of Human Tibial Cancellous Bone Within Individual Subjects
,”
Calcif. Tissue Int.
,
77
(
1
), pp.
37
44
.10.1007/s00223-004-0140-y
26.
Sierpowska
,
J.
,
Hakulinen
,
M. A.
,
Toyras
,
J.
,
Day
,
J. S.
,
Weinans
,
H.
,
Kiviranta
, I
.
,
Jurvelin
,
J. S.
, and
Lappalainen
,
R.
,
2006
, “
Interrelationships Between Electrical Properties and Microstructure of Human Trabecular Bone
,”
Phys. Med. Biol.
,
51
(
20
), pp.
5289
5303
.10.1088/0031-9155/51/20/014
27.
Sode
,
M.
,
Burghardt
,
A. J.
,
Kazakia
,
G. J.
,
Link
,
T. M.
, and
Majumdar
,
S.
,
2010
, “
Regional Variations of Gender-Specific and Age-Related Differences in Trabecular Bone Structure of the Distal Radius and Tibia
,”
Bone
,
46
(
6
), pp.
1652
1660
.10.1016/j.bone.2010.02.021
You do not currently have access to this content.