Large conduit arteries are not purely elastic, but viscoelastic, which affects not only the mechanical behavior but also the ventricular afterload. Different hysteresis loops such as pressure-diameter, pressure-luminal cross-sectional area (LCSA), and stress–strain have been used to estimate damping capacity, which is associated with the ratio of the dissipated energy to the stored energy. Typically, linearized methods are used to calculate the damping capacity of arteries despite the fact that arteries are nonlinearly viscoelastic. The differences in the calculated damping capacity between these hysteresis loops and the most common linear and correct nonlinear methods have not been fully examined. The purpose of this study was thus to examine these differences and to determine a preferred approach for arterial damping capacity estimation. Pressurization tests were performed on mouse extralobar pulmonary and carotid arteries in their physiological pressure ranges with pressure (P) and outer diameter (OD) measured. The P-inner diameter (ID), P-stretch, P-Almansi strain, P-Green strain, P-LCSA, and stress–strain loops (including the Cauchy and Piola-Kirchhoff stresses and Almansi and Green strains) were calculated using the P-OD data and arterial geometry. Then, the damping capacity was calculated from these loops with both linear and nonlinear methods. Our results demonstrate that the linear approach provides a reasonable approximation of damping capacity for all of the loops except the Cauchy stress-Almansi strain, for which the estimate of damping capacity was significantly smaller (22 ± 8% with the nonlinear method and 31 ± 10% with the linear method). Between healthy and diseased extralobar pulmonary arteries, both methods detected significant differences. However, the estimate of damping capacity provided by the linear method was significantly smaller (27 ± 11%) than that of the nonlinear method. We conclude that all loops except the Cauchy stress-Almansi strain loop can be used to estimate artery wall damping capacity in the physiological pressure range and the nonlinear method is recommended over the linear method.

References

References
1.
Armentano
,
R. L.
,
Barra
,
J. G.
,
Pessana
,
F. M.
,
Craiem
,
D. O.
,
Graf
,
S.
,
Santana
,
D. B.
, and
Sanchez
,
R. A.
,
2007
, “
Smart Smooth Muscle Spring-Dampers. Smooth Muscle Smart Filtering Helps to More Efficiently Protect the Arterial Wall
,”
IEEE Eng. Med. Biol. Mag.
,
26
(
1
), pp.
62
70
.10.1109/MEMB.2007.289123
2.
Bia
,
D.
,
Grignola
,
J. C.
,
Armentano
,
R. L.
, and
Ginés
,
F. F.
,
2003
, “
Improved Pulmonary Artery Buffering Function During Phenylephrine-Induced Pulmonary Hypertension
,”
Mol. Cell Biochem.
,
246
(
1–2
), pp.
19
24
.10.1023/A:1023491525659
3.
Boutouyrie
,
P.
,
Bézie
,
Y.
,
Lacolley
,
P.
,
Challande
,
P.
,
Chamiot-Clerc
,
P.
,
Benetos
,
A.
,
De la Faverie
,
J. F.
,
Safar
,
M.
, and
Laurent
,
S.
,
1997
, “
In Vivo/In Vitro Comparison of Rat Abdominal Aorta Wall Viscosity. Influence of Endothelial Function
,”
Arterioscler., Thromb., Vasc. Biol.
,
17
(
7
), pp.
1346
1355
.10.1161/01.ATV.17.7.1346
4.
Cox
,
R. H.
,
1982
, “
Comparison of Mechanical and Chemical Properties of Extra- and Intralobar Canine Pulmonary Arteries
,”
Am. J. Physiol.
,
242
(
2
), pp.
H245
H253
.
5.
Cox
,
R. H.
,
1984
, “
Viscoelastic Properties of Canine Pulmonary Arteries
,”
Am. J. Physiol.
,
246
(
1–2
), pp.
H90
H96
.
6.
Fratzl
,
P.
,
2008
,
Collagen: Structure and Mechanics
,
Springer
,
New York
.
7.
Fung
Y. C.
,
1993
,
Biomechanics: Mechanical Properties of Living Tissues
,
Springer-Verlag
,
New York
.
8.
Santana
,
D. B.
,
Barra
,
J. G.
,
Grignola
,
J. C.
,
Ginés
,
F. F.
, and
Armentano
,
R. L.
,
2005
, “
Pulmonary Artery Smooth Muscle Activation Attenuates Arterial Dysfunction During Acute Pulmonary Hypertension
,”
J. Appl. Physiol.
,
98
(
2
), pp.
605
613
.10.1152/japplphysiol.00361.2004
9.
Silver
,
F. H.
,
Horvath
,
I.
, and
Foran
,
D. J.
,
2001
, “
Viscoelasticity of the Vessel Wall: The Role of Collagen and Elastic Fibers
,”
Crit. Rev. Biomed. Eng.
,
29
(
3
), pp.
279
301
.10.1615/CritRevBiomedEng.v29.i3.10
10.
Gariepy
,
J.
,
Massonneau
,
M.
,
Levenson
,
J.
,
Heudes
,
D.
, and
Simon
,
A.
,
1993
, “
Evidence for In Vivo Carotid and Femoral Wall Thickening in Human Hypertension
,”
Hypertension
,
22
(
1
), pp.
111
118
.10.1161/01.HYP.22.1.111
11.
Ivy
,
D. D.
,
Neish
,
S. R.
,
Knudson
,
O. A.
,
Nihill
,
M. R.
,
Schaffer
,
M. S.
,
Tyson
,
R. W.
,
Abman
,
S. H.
,
Shaffer
,
E. M.
, and
Valdes-Cruz
,
L.
,
1998
, “
Intravascular Ultrasonic Characteristics and Vasoreactivity of the Pulmonary Vasculature in Children With Pulmonary Hypertension
,”
Am. J. Cardiol.
,
81
(
6
), pp.
740
748
.10.1016/S0002-9149(97)01031-X
12.
Armentano
,
R. L.
,
Graf
,
S.
,
Barra
,
J. G.
,
Velikovsky
,
G.
,
Baglivo
,
H.
,
Sánchez
,
R.
,
Simon
,
A.
,
Pichel
,
R. H.
, and
Levenson
,
J.
,
1998
, “
Carotid Wall Viscosity Increase is Related to Intima-Media Thickening in Hypertensive Patients
,”
Hypertension
,
31
(
1–2
), pp.
534
539
.10.1161/01.HYP.31.1.534
13.
Grignola
,
J. C.
,
Ginés
,
F.
,
Bia
,
D.
, and
Armentano
,
R.
,
2007
, “
Improved Right Ventricular-Vascular Coupling During Active Pulmonary Hypertension
,”
Int. J. Cardiol.
,
115
(
2
), pp.
171
182
.10.1016/j.ijcard.2006.03.007
14.
Lakes
,
R. S.
,
2009
,
Viscoelastic Materials
,
Cambridge University Press
,
Cambridge/New York
.
15.
Graesser
,
E. J.
, and
Wong
,
C. R.
,
1991
, “
Analysis of Strain Dependent Damping in Materials via Modeling of Material Point Hysteresis
,”
David Taylor Research Center
,
U.S. Navy
, Report No. DTRC-SME-91-34.
16.
Boutouyrie
,
P.
,
Boumaza
,
S.
,
Challande
,
P.
,
Lacolley
,
P.
, and
Laurent
,
S.
,
1998
, “
Smooth Muscle Tone and Arterial Wall Viscosity: An In Vivo/In Vitro Study
,”
Hypertension
,
32
(
2
), pp.
360
364
.10.1161/01.HYP.32.2.360
17.
Graesser
,
E. J.
, and
Wong
,
C. R.
,
1992
, “
Relationship of Traditional Damping Measures for Materials With High Damping Capacity: A Review
,”
Symposium on M3D: Mechanics and Mechanisms of Material Damping
,
V. K.
Kinra
, and
A.
Wolfenden
, eds.,
American Society for Testing Materials, Philadelphia
, pp.
316
343
.
18.
Shau
,
Y. W.
,
Wang
,
C. L.
,
Shieh
,
J. Y.
, and
Hsu
,
T. C.
,
1999
, “
Noninvasive Assessment of the Viscoelasticity of Peripheral Arteries
,”
Ultrasound Med. Biol.
,
25
(
9
), pp.
1377
1388
.10.1016/S0301-5629(99)00097-6
19.
Kobs
,
R. W.
,
Muvarak
,
N. E.
,
Eickhoff
,
J. C.
, and
Chesler
,
N. C.
,
2005
, “
Linked Mechanical and Biological Aspects of Remodeling in Mouse Pulmonary Arteries With Hypoxia-Induced Hypertension
,”
Am. J. Physiol. Heart Circ. Physiol.
,
288
(
3
), pp.
H1209
H1217
.10.1152/ajpheart.01129.2003
20.
Wang
,
Z.
, and
Chesler
,
N. C.
,
2012
, “
Role of Collagen Content and Cross-Linking in Large Pulmonary Arterial Stiffening After Chronic Hypoxia
,”
Biomech. Model. Mechanobiol.
,
11
(
1–2
), pp.
279
289
10.1007/s10237-011-0309-z
21.
Ooi
,
C. Y.
,
Wang
,
Z.
,
Tabima
,
D. M.
,
Eickhoff
,
J. C.
, and
Chesler
,
N. C.
,
2010
, “
The Role of Collagen in Extralobar Pulmonary Artery Stiffening in Response to Hypoxia-Induced Pulmonary Hypertension
,”
Am. J. Physiol. Heart Circ. Physiol.
,
299
(
6
), pp.
H1823
H1831
.10.1152/ajpheart.00493.2009
22.
Fagan
,
K. A.
,
Fouty
,
B. W.
,
Tyler
,
R. C.
,
Morris
,
K. G.
,
Hepler
,
L. K.
,
Sato
,
K.
,
LeCras
,
T. D.
,
Abman
,
S. H.
,
Weinberger
,
H. D.
,
Huang
,
P. L.
,
McMurtry
,
I. F.
, and
Rodman
,
D. M.
,
1999
, “
The Pulmonary Circulation of Homozygous or Heterozygous eNOS-Null Mice is Hyperresponsive to Mild Hypoxia
,”
J. Clin. Invest.
,
103
(
2
), pp.
291
299
.10.1172/JCI3862
23.
Quinlan
,
T. R.
,
Li
,
D.
,
Laubach
,
V. E.
,
Shesely
,
E. G.
,
Zhou
,
N.
, and
Johns
,
R. A.
,
2000
, “
eNOS-Deficient Mice Show Reduced Pulmonary Vascular Proliferation and Remodeling to Chronic Hypoxia
,”
Am. J. Physiol. Lung Cell Mol. Physiol.
,
279
(
4
), pp.
L641
L650
.
24.
Ozaki
,
M.
,
Kawashima
,
S.
,
Yamashita
,
T.
,
Ohashi
,
Y.
,
Rikitake
,
Y.
,
Inoue
,
N.
,
Hirata
,
K. I.
,
Hayashi
,
Y.
,
Itoh
,
H.
, and
Yokoyama
,
M.
,
2001
, “
Reduced Hypoxic Pulmonary Vascular Remodeling by Nitric Oxide From the Endothelium
,”
Hypertension
,
37
(
2
), pp.
322
327
.10.1161/01.HYP.37.2.322
25.
Tabima
,
D. M.
, and
Chesler
,
N. C.
,
2010
, “
The Effects of Vasoactivity and Hypoxic Pulmonary Hypertension on Extralobar Pulmonary Artery Biomechanics
,”
J. Biomech.
,
43
(
10
), pp.
1864
1869
.10.1016/j.jbiomech.2010.03.033
26.
Ciuclan
,
L.
,
Bonneau
,
O.
,
Hussey
,
M.
,
Duggan
,
N.
,
Holmes
,
A. M.
,
Good
,
R.
,
Stringer
,
R.
,
Jones
,
P.
,
Morrell
,
N. W.
,
Jarai
,
G.
,
Walker
,
C.
,
Westwick
,
J.
, and
Thomas
,
M.
,
2011
, “
A Novel Murine Model of Severe Pulmonary Arterial Hypertension
,”
Am. J. Respir. Crit. Care Med.
,
184
(
10
), pp.
1171
1182
.10.1164/rccm.201103-0412OC
27.
Wang
,
Z.
,
Lakes
,
R. S.
, and
Chesler
,
N. C.
,
2012
, “
Changes in Conduit Pulmonary Arterial Static and Dynamic Mechanical Properties During Severe Hypoxic Pulmonary Hypertension
,”
2012 ASME Summer Bioengineering Conference
,
Fajardo, Puerto Rico
.
28.
Tian
,
L.
,
Lammers
,
S. R.
,
Kao
,
P. H.
,
Albietz
,
J. A.
,
Stenmark
,
K. R.
,
Qi
,
H. J.
,
Shandas
,
R.
, and
Hunter
,
K. S.
,
2012
, “
Impact of Residual Stretch and Remodeling on Collagen Engagement in Healthy and Pulmonary Hypertensive Calf Pulmonary Arteries at Physiological Pressures
,”
Ann. Biomed. Eng.
,
40
(
7
), pp.
1419
1433
.10.1007/s10439-012-0509-4
29.
Humphrey
,
J. D.
,
1995
, “
Mechanics of the Arterial Wall: Review and Directions
,”
Crit. Rev. Biomed. Eng.
,
23
(
1–2
), pp.
1
162
.
30.
Holzapfel
,
G. A.
,
2000
,
Nonlinear Solid Mechanics: A Continuum Approach for Engineering
,
Wiley
,
Chichester/New York
.
You do not currently have access to this content.