Detailed knowledge of knee joint kinematics and dynamic loading is essential for improving the design and outcomes of surgical procedures, tissue engineering applications, prosthetics design, and rehabilitation. The need for dynamic computational models that link kinematics, muscle and ligament forces, and joint contacts has long been recognized but such body-level forward dynamic models do not exist in recent literature. A main barrier in using computational models in the clinic is the validation of the in vivo contact, muscle, and ligament loads. The purpose of this study was to develop a full body, muscle driven dynamic model with subject specific leg geometries and validate it during squat and toe-rise motions. The model predicted loads were compared to in vivo measurements acquired with an instrumented knee implant. Data for this study were provided by the “Grand Challenge Competition to Predict In-Vivo Knee Loads” for the 2012 American Society of Mechanical Engineers Summer Bioengineering Conference. Data included implant and bone geometries, ground reaction forces, EMG, and the instrumented knee implant measurements. The subject specific model was developed in the multibody framework. The knee model included three ligament bundles for the lateral collateral ligament (LCL) and the medial collateral ligament (MCL), and one bundle for the posterior cruciate ligament (PCL). The implanted tibia tray was segmented into 326 hexahedral elements and deformable contacts were defined between the elements and the femoral component. The model also included 45 muscles on each leg. Muscle forces were computed for the muscle driven simulation by a feedback controller that used the error between the current muscle length in the forward simulation and the muscle length recorded during a kinematics driven inverse simulation. The predicted tibia forces and torques, ground reaction forces, electromyography (EMG) patterns, and kinematics were compared to the experimentally measured values to validate the model. Comparisons were done graphically and by calculating the mean average deviation (MAD) and root mean squared deviation (RMSD) for all outcomes. The MAD value for the tibia vertical force was 279 N for the squat motion and 325 N for the toe-rise motion, 45 N and 53 N for left and right foot ground reaction forces during the squat and 94 N and 82 N for toe-rise motion. The maximum MAD value for any of the kinematic outcomes was 7.5 deg for knee flexion-extension during the toe-rise motion.

References

References
1.
Fregly
,
B. J.
,
Besier
,
T. F.
,
Lloyd
,
D. G.
,
Delp
,
S. L.
,
Banks
,
S. A.
,
Pandy
,
M. G.
, and
D'Lima
,
D. D.
,
2012
, “
Grand challenge competition to predict in vivo knee loads
,”
J. Orthop. Res.
,
30
(
4
), pp.
503
513
.10.1002/jor.22023
2.
Mundermann
,
A.
,
Dyrby
,
C. O.
,
D'Lima
,
D. D.
,
Colwell
,
C. W.
, Jr
.
, and
Andriacchi
,
T. P.
,
2008
, “
In vivo knee loading characteristics during activities of daily living as measured by an instrumented total knee replacement
,”
J. Orthop. Res.
,
26
(
9
), pp.
1167
1172
.10.1002/jor.20655
3.
Heinlein
,
B.
,
Kutzner
,
I.
,
Graichen
,
F.
,
Bender
,
A.
,
Rohlmann
,
A.
,
Halder
,
A. M.
,
Beier
,
A.
, and
Bergmann
,
G.
,
2009
, “
ESB Clinical Biomechanics Award 2008: Complete data of total knee replacement loading for level walking and stair climbing measured in vivo with a follow-up of 6-10 months
,”
Clin. Biomech. (Bristol, Avon)
,
24
(
4
), pp.
315
326
.10.1016/j.clinbiomech.2009.01.011
4.
Andriacchi
,
T. P.
,
Mundermann
,
A.
,
Smith
,
R. L.
,
Alexander
,
E. J.
,
Dyrby
,
C. O.
, and
Koo
,
S.
,
2004
, “
A framework for the in vivo pathomechanics of osteoarthritis at the knee
,”
Ann. Biomed. Eng.
,
32
(
3
), pp.
447
457
.10.1023/B:ABME.0000017541.82498.37
5.
Wimmer
,
M. A.
, and
Andriacchi
,
T. P.
,
1997
, “
Tractive forces during rolling motion of the knee: implications for wear in total knee replacement
,”
J. Biomech.
,
30
(
2
), pp.
131
137
.10.1016/S0021-9290(96)00112-1
6.
Sathasivam
,
S.
, and
Walker
,
P. S.
,
1998
, “
Computer model to predict subsurface damage in tibial inserts of total knees
,”
J. Orthop. Res.
,
16
(
5
), pp.
564
571
.10.1002/jor.1100160507
7.
Blankevoort
,
L.
,
Kuiper
,
J. H.
,
Huiskes
,
R.
, and
Grootenboer
,
H. J.
,
1991
, “
Articular contact in a three-dimensional model of the knee
,”
J. Biomech.
,
24
(
11
), pp.
1019
1031
.10.1016/0021-9290(91)90019-J
8.
Pandy
,
M. G.
,
Sasaki
,
K.
, and
Kim
,
S.
,
1998
, “
A Three-Dimensional Musculoskeletal Model of the Human Knee Joint. Part 1: Theoretical Construct
,”
Comput. Methods Biomech. Biomed. Engin.
,
1
(
2
), pp.
87
108
.10.1080/01495739708936697
9.
Abdel-Rahman
,
E. M.
, and
Hefzy
,
M. S.
,
1998
, “
Three-dimensional dynamic behaviour of the human knee joint under impact loading
,”
Med. Eng. Phys.
,
20
(
4
), pp.
276
290
.10.1016/S1350-4533(98)00010-1
10.
Cohen
,
Z. A.
,
Roglic
,
H.
,
Grelsamer
,
R. P.
,
Henry
,
J. H.
,
Levine
,
W. N.
,
Mow
,
V. C.
, and
Ateshian
,
G. A.
,
2001
, “
Patellofemoral stresses during open and closed kinetic chain exercises. An analysis using computer simulation
,”
Am. J. Sports Med.
,
29
(
4
), pp.
480
487
.
11.
Dhaher
,
Y. Y.
, and
Kahn
,
L. E.
,
2002
, “
The effect of vastus medialis forces on patello-femoral contact: a model-based study
,”
J. Biomech. Eng.
,
124
(
6
), pp.
758
767
.10.1115/1.1516196
12.
Chao
,
E. Y.
,
2003
, “
Graphic-based musculoskeletal model for biomechanical analyses and animation
,”
Med. Eng. Phys.
,
25
(
3
), pp.
201
212
.10.1016/S1350-4533(02)00181-9
13.
Elias
,
J. J.
,
Wilson
,
D. R.
,
Adamson
,
R.
, and
Cosgarea
,
A. J.
,
2004
, “
Evaluation of a computational model used to predict the patellofemoral contact pressure distribution
,”
J. Biomech.
,
37
(
3
), pp.
295
302
.10.1016/S0021-9290(03)00306-3
14.
Piazza
,
S. J.
, and
Delp
,
S. L.
,
2001
, “
Three-dimensional dynamic simulation of total knee replacement motion during a step-up task
,”
J. Biomech. Eng.
,
123
(
6
), pp.
599
606
.10.1115/1.1406950
15.
Bei
,
Y.
, and
Fregly
,
B. J.
,
2004
, “
Multibody dynamic simulation of knee contact mechanics
,”
Med. Eng. Phys.
,
26
(
9
), pp.
777
789
.10.1016/j.medengphy.2004.07.004
16.
Halloran
,
J. P.
,
Petrella
,
A. J.
, and
Rullkoetter
,
P. J.
,
2005
, “
Explicit finite element modeling of total knee replacement mechanics
,”
J. Biomech.
,
38
(
2
), pp.
323
331
.10.1016/j.jbiomech.2004.02.046
17.
Kim
,
H. J.
,
Fernandez
,
J. W.
,
Akbarshahi
,
M.
,
Walter
,
J. P.
,
Fregly
,
B. J.
, and
Pandy
,
M. G.
,
2009
, “
Evaluation of predicted knee-joint muscle forces during gait using an instrumented knee implant
,”
J. Orthop. Res.
,
27
(
10
), pp.
1326
1331
.10.1002/jor.20876
18.
Lundberg
,
H. J.
,
Foucher
,
K. C.
,
Andriacchi
,
T. P.
, and
Wimmer
,
M. A.
,
2012
, “
Direct comparison of measured and calculated total knee replacement force envelopes during walking in the presence of normal and abnormal gait patterns
,”
J. Biomech.
,
45
(
6
), pp.
990
996
.10.1016/j.jbiomech.2012.01.015
19.
Lundberg
,
H. J.
,
Foucher
,
K. C.
, and
Wimmer
,
M. A.
,
2009
, “
A parametric approach to numerical modeling of TKR contact forces
,”
J. Biomech.
,
42
(
4
), pp.
541
545
.10.1016/j.jbiomech.2008.11.030
20.
Godest
,
A. C.
,
Beaugonin
,
M.
,
Haug
,
E.
,
Taylor
,
M.
, and
Gregson
,
P. J.
,
2002
, “
Simulation of a knee joint replacement during a gait cycle using explicit finite element analysis
,”
J. Biomech.
,
35
(
2
), pp.
267
275
.10.1016/S0021-9290(01)00179-8
21.
Baldwin
,
M. A.
,
Clary
,
C. W.
,
Fitzpatrick
,
C. K.
,
Deacy
,
J. S.
,
Maletsky
,
L. P.
, and
Rullkoetter
,
P. J.
,
2012
, “
Dynamic finite element knee simulation for evaluation of knee replacement mechanics
,”
J. Biomech.
,
45
(
3
), pp.
474
483
.10.1016/j.jbiomech.2011.11.052
22.
Lanovaz
,
J. L.
, and
Ellis
,
R. E.
,
2009
, “
A cadaverically evaluated dynamic FEM model of closed-chain TKR mechanics
,”
J. Biomech. Eng.
,
131
(
5
),
p. 051002
.10.1115/1.3078159
23.
Zelle
,
J.
,
Heesterbeek
,
P. J.
,
De
Waal Malefijt
,
M.
, and
Verdonschot
,
N.
,
2010
, “
Numerical analysis of variations in posterior cruciate ligament properties and balancing techniques on total knee arthroplasty loading
,”
Med. Eng. Phys.
,
32
(
7
), pp.
700
707
.10.1016/j.medengphy.2010.04.013
24.
Fregly
,
B. J.
,
Bei
,
Y.
, and
Sylvester
,
M. E.
,
2003
, “
Experimental evaluation of an elastic foundation model to predict contact pressures in knee replacements
,”
J. Biomech.
,
36
(
11
), pp.
1659
1668
.10.1016/S0021-9290(03)00176-3
25.
Lifemodeler
,
I.
,
2010
, “
Lifemod Manual.
”,
Lifemodeler Inc.
,
San Clemente, CA
.
26.
Wismans
,
J.
,
Veldpaus
,
F.
,
Janssen
,
J.
,
Huson
,
A.
, and
Struben
,
P.
,
1980
, “
A three-dimensional mathematical model of the knee-joint
,”
J. Biomech.
,
13
(
8
), pp.
677
685
.10.1016/0021-9290(80)90354-1
27.
DeFrate
,
L. E.
,
Gill
,
T. J.
, and
Li
,
G.
,
2004
, “
In vivo function of the posterior cruciate ligament during weightbearing knee flexion
,”
Am. J. Sports Med.
,
32
(
8
), pp.
1923
1928
.10.1177/0363546504264896
28.
Guess
,
T. M.
,
Liu
,
H.
,
Bhashyam
,
S.
, and
Thiagarajan
,
G.
,
2013
, “
A multibody knee model with discrete cartilage prediction of tibio-femoral contact mechanics
,”
Comput. Meth. Biomech. Biomed. Eng.
,
16
(
3
), pp.
256
270
.10.1080/10255842.2011.617004
29.
Guess
,
T. M.
,
Thiagarajan
,
G.
,
Kia
,
M.
, and
Mishra
,
M.
,
2010
, “
A subject specific multibody model of the knee with menisci
,”
Med. Eng. Phys.
,
32
(
5
), pp.
505
515
.10.1016/j.medengphy.2010.02.020
30.
Guess
,
T. M.
, and
Stylianou
,
A.
,
2012
, “
Simulation of anterior cruciate ligament deficiency in a musculoskeletal model with anatomical knees
,”
Open Biomed. Eng. J.
,
6
, pp.
23
32
.10.2174/1874230001206010023
31.
Machado
,
M.
,
Moreir
,
P.
,
Flores
,
P.
, and
Lankarani
,
H. M.
,
2012
, “
Compliant contact force models in multibody dynamics:Evolution of the Hertz contact theory
.,”
Mechanism and Machine Theory
,
53
, pp.
99
121
.10.1016/j.mechmachtheory.2012.02.010
32.
Guess
,
T. M.
, and
Maletsky
,
L. P.
,
2005
, “
Computational modelling of a total knee prosthetic loaded in a dynamic knee simulator
,”
Med. Eng. Phys.
,
27
(
5
), pp.
357
367
.10.1016/j.medengphy.2004.11.003
33.
Li
,
L.
,
Tong
,
K.
,
Song
,
R.
, and
Koo
,
T. K.
,
2007
, “
Is maximum isometric muscle stress the same among prime elbow flexors?,
Clin. Biomech. (Bristol, Avon)
,
22
(
8
), pp.
874
883
.10.1016/j.clinbiomech.2007.06.001
34.
Fukunaga
,
T.
,
Roy
,
R. R.
,
Shellock
,
F. G.
,
Hodgson
,
J. A.
, and
Edgerton
,
V. R.
,
1996
, “
Specific tension of human plantar flexors and dorsiflexors
,”
J. Appl. Physiol.
,
80
(
1
), pp.
158
165
.
35.
McMahon
,
T. A.
,
1984
,
Muscles, reflexes, and locomotion
,
Princeton University Press
,
Princeton, NJ
.
36.
Smith
,
G.
,
1989
, “
Padding point extrapolation techniques for the Butterworth digital filter
,”
J. Biomech.
,
22
(
8–9
), pp.
967
971
.10.1016/0021-9290(89)90082-1
37.
Winter
,
D. A.
,
1990
,
Biomechanics and motor control of human movement
,
Wiley
,
New York, NY
.
38.
Shelburne
,
K. B.
,
Torry
,
M. R.
, and
Pandy
,
M. G.
,
2006
, “
Contributions of muscles, ligaments, and the ground-reaction force to tibiofemoral joint loading during normal gait
,”
J. Orthop. Res.
,
24
(
10
), pp.
1983
1990
.10.1002/jor.20255
39.
Lin
,
Y. C.
,
Walter
,
J. P.
,
Banks
,
S. A.
,
Pandy
,
M. G.
, and
Fregly
,
B. J.
,
2010
, “
Simultaneous prediction of muscle and contact forces in the knee during gait
,”
J. Biomech.
,
43
(
5
), pp.
945
952
.10.1016/j.jbiomech.2009.10.048
40.
Bloemker
,
K. H.
,
Guess
,
T. M.
,
Maletsky
,
L.
, and
Dodd
,
K.
,
2012
, “
Computational knee ligament modeling using experimentally determined zero-load lengths
,”
Open Biomed. Eng. J.
,
6
, pp.
33
41
.10.2174/1874230001206010033
41.
Guess
,
T. M.
,
2012
, “
Forward Dynamics Simulation Using a Natural Knee with Menisci in the Multibody Framework
,”
Multibody Syst. Dyn.
,
28
, pp.
37
53
.10.1007/s11044-011-9293-4
42.
Lloyd
,
D. G.
, and
Buchanan
,
T. S.
,
2001
, “
Strategies of muscular support of varus and valgus isometric loads at the human knee
,”
J. Biomech.
,
34
(
10
), pp.
1257
1267
.10.1016/S0021-9290(01)00095-1
You do not currently have access to this content.