Congenital heart defects arise during the early stages of development, and studies have linked abnormal blood flow and irregular cardiac function to improper cardiac morphogenesis. The embryonic zebrafish offers superb optical access for live imaging of heart development. Here, we build upon previously used techniques to develop a methodology for quantifying cardiac function in the embryonic zebrafish model. Imaging was performed using bright field microscopy at 1500 frames/s at 0.76 μm/pixel. Heart function was manipulated in a wild-type zebrafish at ∼55 h post fertilization (hpf). Blood velocity and luminal diameter were measured at the atrial inlet and atrioventricular junction (AVJ) by analyzing spatiotemporal plots. Control volume analysis was used to estimate the flow rate waveform, retrograde fractions, stroke volume, and cardiac output. The diameter and flow waveforms at the inlet and AVJ are highly repeatable between heart beats. We have developed a methodology for quantifying overall heart function, which can be applied to early stages of zebrafish development.

References

References
1.
Bartman
,
T.
,
Walsh
,
E. C.
,
Wen
,
K.-K.
,
McKane
,
M.
,
Ren
,
J.
,
Alexander
,
J.
,
Rubenstein
,
P. A.
, and
Stainier
,
D. Y. R.
,
2004
, “
Early Myocardial Function Affects Endocardial Cushion Development in Zebrafish
,”
PLoS Biol.
,
2
(
5
), pp.
673
681
.10.1371/journal.pbio.0020129
2.
Broekhuizen
,
M. L. A.
,
Hogers
,
B.
,
DeRuiter
,
M. C.
,
Poelmann
,
R. E.
,
Gittenberger-de Groot
,
A. C.
, and
Wladimiroff
,
J. W.
,
1999
, “
Altered Hemodynamics in Chick Embryos After Extraembryonic Venous Obstruction
,”
Ultrasound Obstet. Gynecol.
,
13
(
6
), pp.
437
445
.10.1046/j.1469-0705.1999.13060437.x
3.
Hogers
,
B.
,
DeRuiter
,
M. C.
,
Gittenberger-de Groot
,
A. C.
, and
Poelmann
,
R. E.
,
1999
, “
Extraembryonic Venous Obstructions Lead to Cardiovascular Malformations and can be Embryolethal
,”
Cardiovasc. Res.
,
41
(
1
), pp.
87
99
.10.1016/S0008-6363(98)00218-1
4.
Hogers
,
B.
,
DeRuiter
,
M. C.
,
Gittenberger-de Groot
,
A. C.
, and
Poelmann
,
R. E.
,
1997
, “
Unilateral Vitelline Vein Ligation Alters Intracardiac Blood Flow Patterns and Morphogenesis in the Chick Embryo
,”
Circ. Res.
,
80
(
4
), pp.
473
481
.10.1161/01.RES.80.4.473
5.
Hove
,
J. R.
,
Köster
,
R. W.
,
Forouhar
,
A. S.
,
Acevedo-Bolton
,
G.
,
Fraser
,
S. E.
, and
Gharib
,
M.
,
2003
, “
Intracardiac Fluid Forces are an Essential Epigenetic Factor for Embryonic Cardiogenesis
,”
Nature
,
421
(
6919
), pp.
172
177
.10.1038/nature01282
6.
Kopp
,
R.
,
Pelster
,
B.
, and
Schwerte
,
T.
,
2007
, “
How Does Blood Cell Concentration Modulate Cardiovascular Parameters in Developing Zebrafish (Danio Rerio)?
,”
Comp. Biochem. Physiol., Part A: Mol. Integr. Physiol.
,
146
(
3
), pp.
400
407
.10.1016/j.cbpa.2006.11.007
7.
Filas
,
B. A.
,
Efimov
,
I. R.
, and
Taber
,
L. A.
,
2007
, “
Optical Coherence Tomography as a Tool for Measuring Morphogenetic Deformation of the Looping Heart
,”
Anat. Rec.
,
290
(
9
), pp.
1057
1068
.10.1002/ar.20575
8.
Auman
,
H. J.
,
Coleman
,
H.
,
Riley
,
H. E.
,
Olale
,
F.
,
Tsai
,
H. J.
, and
Yelon
,
D.
,
2007
, “
Functional Modulation of Cardiac Form Through Regionally Confined Cell Shape Changes
,”
PLoS Biol.
,
5
(
3
), pp.
604
615
.10.1371/journal.pbio.0050053
9.
Stainier
,
D. Y.
,
Lee
,
R. K.
, and
Fishman
,
M. C.
,
1993
, “
Cardiovascular Development in the Zebrafish. I. Myocardial Fate Map and Heart Tube Formation
,”
Development
,
119
(
1
), pp.
31
40
.
10.
Thisse
,
C.
, and
Zon
,
L. I.
,
2002
, “
Organogenesis—Heart and Wood Formation From the Zebrafish Point of View
,”
Science
,
295
(
5554
), pp.
457
462
.10.1126/science.1063654
11.
Bakkers
,
J.
,
2011
, “
Zebrafish as a Model to Study Cardiac Development and Human Cardiac Disease
,”
Cardiovasc. Res.
,
91
(
2
), pp.
279
288
.10.1093/cvr/cvr098
12.
Chico
,
T. J. A.
,
Ingham
,
P. W.
, and
Crossman
,
D. C.
,
2008
, “
Modeling Cardiovascular Disease in the Zebrafish
,”
Trends Cardiovasc. Med.
,
18
(
4
), pp.
150
155
.10.1016/j.tcm.2008.04.002
13.
Dahme
,
T.
,
Katus
,
H. A.
, and
Rottbauer
,
W.
,
2009
, “
Fishing for the Genetic Basis of Cardiovascular Disease
,”
Dis. Model. Mech.
,
2
(
1–2
), pp.
18
22
.10.1242/dmm.000687
14.
Stainier
,
D. Y. R.
, and
Fishman
,
M. C.
,
1994
, “
The Zebrafish as a Model System to Study Cardiovascular Development
,”
Trends Cardiovasc. Med.
,
4
(
5
), pp.
207
212
.10.1016/1050-1738(94)90036-1
15.
Beis
,
D.
,
Bartman
,
T.
,
Jin
,
S. W.
,
Scott
,
I. C.
,
D'Amico
,
L. A.
,
Ober
,
E. A.
,
Verkade
,
H.
,
Frantsve
,
J.
,
Field
,
H. A.
,
Wehman
,
A.
,
Baier
,
H.
,
Tallafuss
,
A.
,
Bally-Cuif
,
L.
,
Chen
,
J. N.
,
Stainier
,
D. Y.
, and
Jungblut
,
B.
,
2005
, “
Genetic and Cellular Analyses of Zebrafish Atrioventricular Cushion and Valve Development
,”
Development
,
132
(
18
), pp.
4193
4204
.10.1242/dev.01970
16.
Beis
,
D.
, and
Stainier
,
D. Y. R.
,
2006
, “
In Vivo Cell Biology: Following the Zebrafish Trend
,”
Trends Cell Biol.
,
16
(
2
), pp.
105
112
.10.1016/j.tcb.2005.12.001
17.
Harvey
,
R. P.
,
2002
, “
Patterning the Vertebrate Heart
,”
Nat. Rev. Genet.
,
3
(
7
), pp.
544
556
.10.1038/nrg843
18.
Lieschke
,
G. J.
, and
Currie
,
P. D.
,
2007
, “
Animal Models of Human Disease: Zebrafish Swim Into View
,”
Nat. Rev. Genet.
,
8
(
5
), pp.
353
367
.10.1038/nrg2091
19.
Roman
,
B. L.
,
Pham
,
V. N.
,
Lawson
,
N. D.
,
Kulik
,
M.
,
Childs
,
S.
,
Lekven
,
A. C.
,
Garrity
,
D. M.
,
Moon
,
R. T.
,
Fishman
,
M. C.
,
Lechleider
,
R. J.
, and
Weinstein
,
B. M.
,
2002
, “
Disruption of Acvrl1 Increases Endothelial Cell Number in Zebrafish Cranial Vessels
,”
Development
,
129
(
12
), pp.
3009
3019
.
20.
Butcher
,
J. T.
,
McQuinn
,
T. C.
,
Sedmera
,
D.
,
Turner
,
D.
, and
Markwald
,
R. R.
,
2007
, “
Transitions in Early Embryonic Atrioventricular Valvular Function Correspond With Changes in Cushion Biomechanics That are Predictable by Tissue Composition
,”
Circ. Res.
,
100
(
10
), pp.
1503
1511
.10.1161/CIRCRESAHA.107.148684
21.
Liu
,
A. P.
,
Nickerson
,
A.
,
Troyer
,
A.
,
Yin
,
X.
,
Cary
,
R.
,
Thornburg
,
K.
,
Wang
,
R.
, and
Rugonyi
,
S.
,
2011
, “
Quantifying Blood Flow and Wall Shear Stresses in the Outflow Tract of Chick Embryonic Hearts
,”
Comput. Struct.
,
89
(
11–12
), pp.
855
867
.10.1016/j.compstruc.2011.03.003
22.
Liu
,
A.P.
,
Yin
,
X.
,
Shi
,
L.
,
Li
,
P.
,
Thornburg
,
K. L.
,
Wang
,
R.
, and
Rugonyi
,
S.
,
2012
, “
Biomechanics of the Chick Embryonic Heart Outflow Tract at HH18 Using 4D Optical Coherence Tomography Imaging and Computational Modeling
,”
PLoS One
,
7
(
7
),
e040869
.10.1371/journal.pone.0040869
23.
Johnson
,
B. M.
,
Garrity
,
D. M.
, and
Dasi
,
L. P.
,
2013
, “
The Transitional Cardiac Pumping Mechanics in the Embryonic Heart
,”
J. Cardiovasc. Eng. Technol.
, (in press).10.1007/s13239-013-0120-3
24.
Forouhar
,
A. S.
,
Liebling
,
M.
,
Hickerson
,
A.
,
Nasiraei-Moghaddam
,
A.
,
Tsai
,
H.-J.
,
Hove
,
J. R.
,
Fraser
,
S. E.
,
Dickinson
,
M. E.
, and
Gharib
,
M.
,
2006
, “
The Embryonic Vertebrate Heart Tube is a Dynamic Suction Pump
,”
Science
,
312
(
5774
), pp.
751
753
.10.1126/science.1123775
25.
Bagatto
,
B.
, and
Burggren
,
W.
,
2006
, “
A Three-Dimensional Functional Assessment of Heart and Vessel Development in the Larva of the Zebrafish (Danio Rerio)
,”
Physiol. Biochem. Zool.
,
79
(
1
), pp.
194
201
.10.1086/498185
26.
Westerfield
,
M.
,
1995
,
The Zebrafish Book
,
University of Oregon Press
,
Eugene, OR
.
27.
Schwerte
,
T.
, and
Pelster
,
B.
,
2000
, “
Digital Motion Analysis as a Tool for Analysing the Shape and Performance of the Circulatory System in Transparent Animals
,”
J. Exp. Biol.
,
203
(
11
), pp.
1659
1669
.
28.
Tam
,
J.
, and
Roorda
,
A.
,
2010
, “
Enhanced Detection of Cell Paths in Spatiotemporal Plots for Noninvasive Microscopy of the Human Retina
,”
Proceedings of the 7th IEEE International Symposium on Biomedical Imaging: From Nano to Macro
, pp.
584
587
.
29.
Drew
,
P. J.
,
Blinder
,
P.
,
Cauwenberghs
,
G.
,
Shih
,
A. Y.
, and
Kleinfeld
,
D.
,
2010
, “
Rapid Determination of Particle Velocity From Space-Time Images Using the Radon Transform
,”
J. Comput. Neurosci.
,
29
(
1–2
), pp.
5
11
.10.1007/s10827-009-0159-1
30.
Duncan
,
D. D.
,
Lemaillet
,
P.
,
Ibrahim
,
M.
,
Nguyen
,
Q. D.
,
Hiller
,
M.
, and
Ramella-Roman
,
J.
,
2010
, “
Absolute Blood Velocity Measured With a Modified Fundus Camera
,”
J. Biomed. Opt.
,
15
(
5
), p.
056014
.10.1117/1.3494565
31.
Japee
,
S. A.
,
Pittman
,
R. N.
, and
Ellis
,
C. G.
,
2005
, “
A New Video Image Analysis System to Study Red Blood Cell Dynamics and Oxygenation in Capillary Networks
,”
Microcirculation (N.Y.)
,
12
(
6
), pp.
489
506
.10.1080/10739680591003332
32.
Japee
,
S. A.
,
Pittman
,
R. N.
, and
Ellis
,
C. G.
,
2005
, “
Automated Method for Tracking Individual Red Blood Cells Within Capillaries to Compute Velocity and Oxygen Saturation
,”
Microcirculation (N.Y.)
,
12
(
6
), pp.
507
515
.10.1080/10739680591003341
33.
Malone
,
M. H.
,
Sciaky
,
N.
,
Stalheim
,
L.
,
Hahn
,
K. M.
,
Linney
,
E.
, and
Johnson
,
G. L.
,
2007
, “
Laser-Scanning Velocimetry: A Confocal Microscopy Method for Quantitative Measurement of Cardiovascular Performance in Zebrafish Embryos and Larvae
,”
BMC Biotechnol.
,
7
(40).10.1186/1472-6750-7-40
34.
Pan
,
X. T.
,
Yu
,
H.
,
Shi
,
X.
,
Korzh
,
V.
, and
Wohland
,
T.
,
2007
, “
Characterization of Flow Direction in Microchannels and Zebrafish Blood Vessels by Scanning Fluorescence Correlation Spectroscopy
,”
J. Biomed. Opt.
,
12
(
1
),
014034
.10.1117/1.2435173
35.
Tam
,
J.
,
Martin
,
J. A.
, and
Roorda
,
A.
,
2010
, “
Noninvasive Visualization and Analysis of Parafoveal Capillaries in Humans
,”
Invest. Ophthalmol. Visual Sci.
,
51
(
3
), pp.
1691
1698
.10.1167/iovs.09-4483
36.
Tam
,
J.
,
Tiruveedhula
,
P.
, and
Roorda
,
A.
,
2011
, “
Characterization of Single-File Flow Through Human Retinal Parafoveal Capillaries Using an Adaptive Optics Scanning Laser Ophthalmoscope
,”
Biomed. Opt. Express
,
2
(
4
), pp.
781
793
.10.1364/BOE.2.000781
You do not currently have access to this content.