While useful models have been proposed to predict the mechanical impact of damage in tendon and other soft tissues, the applicability of these models for describing in vivo injury and age-related degeneration has not been investigated. Therefore, the objective of this study was to develop and validate a simple damage model to predict mechanical alterations in mouse patellar tendons after aging, injury, or healing. To characterize baseline properties, uninjured controls at age 150 days were cyclically loaded across three strain levels and five frequencies. For comparison, damage was induced in mature (120 day-old) mice through either injury or aging. Injured mice were sacrificed at three or six weeks after surgery, while aged mice were sacrificed at either 300 or 570 days old. Changes in mechanical properties (relative to baseline) in the three week post-injury group were assessed and used to develop an empirical damage model based on a simple damage parameter related to the equilibrium stress at a prescribed strain (6%). From the derived model, the viscoelastic properties of the 300 day-old, 570 day-old, and six week post-injury groups were accurately predicted. Across testing conditions, nearly all correlations between predicted and measured parameters were statistically significant and coefficients of determination ranged from R2 = 0.25 to 0.97. Results suggest that the proposed damage model could exploit simple in vivo mechanical measurements to predict how an injured or aged tendon will respond to complex physiological loading regimens.

References

References
1.
Parsons
,
I. M.
,
Apreleva
,
M.
,
Fu
,
F. H.
, and
Woo
,
S. L.
,
2002
, “
The Effect of Rotator Cuff Tears on Reaction Forces at the Glenohumeral Joint
,”
J. Orthop. Res.
,
20
(
3
), pp.
439
446
.10.1016/S0736-0266(01)00137-1
2.
Spinner
,
M.
, and
Kaplan
,
E. B.
,
1970
, “
Extensor Carpi Ulnaris. Its Relationship to the Stability of the Distal Radio-Ulnar Joint
,”
Clin. Orthop. Relat. Res.
,
68
, pp.
124
129
.10.1097/00003086-197001000-00023
3.
Reuther
,
K. E.
,
Sarver
,
J. J.
,
Schultz
,
S. M.
,
Lee
,
C. S.
,
Sehgal
,
C. M.
,
Glaser
,
D. L.
, and
Soslowsky
,
L. J.
,
2012
, “
Glenoid Cartilage Mechanical Properties Decrease after Rotator Cuff Tears in a Rat Model
,”
J. Orthop. Res.
, pp.
1435
1439
.
10.1002/jor.22100
4.
Peltz
,
C. D.
,
Hsu
,
J. E.
,
Zgonis
,
M. H.
,
Trasolini
,
N. A.
,
Glaser
,
D. L.
, and
Soslowsky
,
L. J.
,
2010
, “
The Effect of Altered Loading Following Rotator Cuff Tears in a Rat Model on the Regional Mechanical Properties of the Long Head of the Biceps Tendon
,”
J. Biomech.
,
43
(
15
), pp.
2904
2907
.10.1016/j.jbiomech.2010.07.035
5.
Steinbacher
,
P.
,
Tauber
,
M.
,
Kogler
,
S.
,
Stoiber
,
W.
,
Resch
,
H.
, and
Sanger
,
A. M.
,
2010
, “
Effects of Rotator Cuff Ruptures on the Cellular and Intracellular Composition of the Human Supraspinatus Muscle
,”
Tissue Cell
,
42
(
1
), pp.
37
41
.10.1016/j.tice.2009.07.001
6.
Leach
,
R. E.
, and
Schepsis
,
A. A.
,
1983
, “
Shoulder Pain
,”
Clin. Sports Med.
,
2
(
1
), pp.
123
135
.
7.
Fox
,
J. M.
,
Blazina
,
M. E.
,
Jobe
,
F. W.
,
Kerlan
,
R. K.
,
Carter
,
V. S.
,
Shields
,
C. L.
, Jr.
, and
Carlson
,
G. J.
,
1975
, “
Degeneration and Rupture of the Achilles Tendon
,”
Clin. Orthop. Relat. Res.
,
107
, pp.
221
224
.10.1097/00003086-197503000-00025
8.
Neri
,
B. R.
,
Chan
,
K. W.
, and
Kwon
,
Y. W.
,
2009
, “
Management of Massive and Irreparable Rotator Cuff Tears
,”
J. Shoulder Elbow Surg.
,
18
(
5
), pp.
808
818
.10.1016/j.jse.2009.03.013
9.
Razmjou
,
H.
,
Davis
,
A. M.
,
Jaglal
,
S. B.
,
Holtby
,
R.
, and
Richards
,
R. R.
,
2011
, “
Disability and Satisfaction after Rotator Cuff Decompression or Repair: A Sex and Gender Analysis
,”
BMC Musculoskelet. Disord.
,
12
, p.
66
.10.1186/1471-2474-12-66
10.
Rogers
,
B. A.
,
Little
,
N. J.
, and
Ricketts
,
D. M.
,
2012
, “
The Management of Rotator Cuff Tears in the Elderly
,”
J. Perioper. Pract.
,
22
(
1
), pp.
30
34
.
11.
Duenwald-Kuehl
,
S.
,
Kondratko
,
J.
,
Lakes
,
R. S.
, and
Vanderby
,
R.
, Jr.
,
2012
, “
Damage Mechanics of Porcine Flexor Tendon: Mechanical Evaluation and Modeling
,”
Ann. Biomed. Eng.
, pp.
1692
1707
.10.1007/s10439-012-0538-z
12.
Lemaitre
,
J.
,
1984
, “
How to Use Damage Mechanics
,”
Nucl. Eng. Des.
,
80
(
2
), pp.
233
245
.10.1016/0029-5493(84)90169-9
13.
Natali
,
A. N.
,
Pavan
,
P. G.
,
Carniel
,
E. L.
,
Lucisano
,
M. E.
, and
Taglialavoro
,
G.
,
2005
, “
Anisotropic Elasto-Damage Constitutive Model for the Biomechanical Analysis of Tendons
,”
Med. Eng. Phys.
,
27
(
3
), pp.
209
214
.10.1016/j.medengphy.2004.10.011
14.
Provenzano
,
P. P.
,
Heisey
,
D.
,
Hayashi
,
K.
,
Lakes
,
R.
, and
Vanderby
,
R.
, Jr.
,
2002
, “
Subfailure Damage in Ligament: A Structural and Cellular Evaluation
,”
J. Appl. Physiol.
,
92
(
1
), pp.
362
371
.
15.
Simo
,
J. C.
,
1987
, “
On a Fully 3-Dimensional Finite-Strain Viscoelastic Damage Model - Formulation and Computational Aspects
,”
Comput. Methods Appl. Mech. Eng.
,
60
(
2
), pp.
153
173
.10.1016/0045-7825(87)90107-1
16.
Schechtman
,
H.
, and
Bader
,
D. L.
,
2002
, “
Fatigue Damage of Human Tendons
,”
J. Biomech.
,
35
(
3
), pp.
347
353
.10.1016/S0021-9290(01)00177-4
17.
Subit
,
D.
,
Chabrand
,
P.
, and
Masson
,
C.
,
2009
, “
A Micromechanical Model to Predict Damage and Failure in Biological Tissues. Application to the Ligament-to-Bone Attachment in the Human Knee Joint
,”
J. Biomech.
,
42
(
3
), pp.
261
265
.10.1016/j.jbiomech.2008.10.028
18.
Maher
,
E.
,
Creane
,
A.
,
Lally
,
C.
, and
Kelly
,
D. J.
,
2012
, “
An Anisotropic Inelastic Constitutive Model to Describe Stress Softening and Permanent Deformation in Arterial Tissue
,”
J. Mech. Behav. Biomed. Mater.
,
12C
, pp.
9
19
.10.1016/j.jmbbm.2012.03.001
19.
Dyment
,
N. A.
,
Kazemi
,
N.
,
Aschbacher-Smith
,
L. E.
,
Barthelery
,
N. J.
,
Kenter
,
K.
,
Gooch
,
C.
,
Shearn
,
J. T.
,
Wylie
,
C.
, and
Butler
,
D. L.
,
2011
, “
The Relationships among Spatiotemporal Collagen Gene Expression, Histology, and Biomechanics Following Full-Length Injury in the Murine Patellar Tendon
,”
J. Orthop. Res.
, pp.
28
36
.10.1002/jor.21484
20.
Hope
,
M.
, and
Saxby
,
T. S.
,
2007
, “
Tendon Healing
,”
Foot Ankle Clin.
,
12
(
4
), pp.
553
567
, v.10.1016/j.fcl.2007.07.003
21.
Leadbetter
,
W. B.
,
1992
, “
Cell-Matrix Response in Tendon Injury
,”
Clin. Sports Med.
,
11
(
3
), pp.
533
578
.
22.
Sharma
,
P.
, and
Maffulli
,
N.
,
2005
, “
Basic Biology of Tendon Injury and Healing
,”
Surg.-J. R. Coll. Surg. Edinb. Irel.
,
3
(
5
), pp.
309
316
.
23.
Dunkman
,
A. A.
,
Buckley
,
M. R.
,
Mienaltowski
,
M. J.
,
Adams
,
S.
,
Thomas
,
S. J.
,
Satchell
,
L.
,
Kumar
,
A.
,
Pathmanathan
,
L.
,
Beason
,
D. P.
,
Iozzo
,
R. V.
,
Birk
,
D. E.
, and
Soslowsky
,
L. J.
,
2012
, “
Decorin Expression Is Important for Age-Related Changes in Tendon Structure and Mechanical Properties
,”
Matrix Biol.
,
32
(
1
), pp.
3
13
.10.1016/j.matbio.2012.11.005
24.
Beason
,
D. P.
,
Abboud
,
J. A.
,
Kuntz
,
A. F.
,
Bassora
,
R.
, and
Soslowsky
,
L. J.
,
2011
, “
Cumulative Effects of Hypercholesterolemia on Tendon Biomechanics in a Mouse Model
,”
J. Orthop. Res.
,
29
(
3
), pp.
380
383
.10.1002/jor.21255
25.
Beason
,
D. P.
,
Kuntz
,
A. F.
,
Hsu
,
J. E.
,
Miller
,
K. S.
, and
Soslowsky
,
L. J.
,
2012
, “
Development and Evaluation of Multiple Tendon Injury Models in the Mouse
,”
J. Biomech.
,
45
(
8
), pp.
1550
1553
.10.1016/j.jbiomech.2012.02.022
26.
Lin
,
T. W.
,
Cardenas
,
L.
,
Glaser
,
D. L.
, and
Soslowsky
,
L. J.
,
2006
, “
Tendon Healing in Interleukin-4 and Interleukin-6 Knockout Mice
,”
J. Biomech.
,
39
(
1
), pp.
61
69
.10.1016/j.jbiomech.2004.11.009
27.
Favata
,
M.
,
2006
, “
Scarless Healing in the Fetus: Implications and Strategies for Postnatal Tendon Repair
,” Ph.D. thesis, University of Pennsylvania, Philadelphia, PA.
28.
Carroll
,
C. C.
,
Dickinson
,
J. M.
,
Haus
,
J. M.
,
Lee
,
G. A.
,
Hollon
,
C. J.
,
Aagaard
,
P.
,
Magnusson
,
S. P.
, and
Trappe
,
T. A.
,
2008
, “
Influence of Aging on the In Vivo Properties of Human Patellar Tendon
,”
J. Appl. Physiol.
,
105
(
6
), pp.
1907
1915
.10.1152/japplphysiol.00059.2008
29.
Dressler
,
M. R.
,
Butler
,
D. L.
,
Wenstrup
,
R.
,
Awad
,
H. A.
,
Smith
,
F.
, and
Boivin
,
G. P.
,
2002
, “
A Potential Mechanism for Age-Related Declines in Patellar Tendon Biomechanics
,”
J. Orthop. Res.
,
20
(
6
), pp.
1315
1322
.10.1016/S0736-0266(02)00052-9
30.
Williams
,
I. F.
,
Craig
,
A. S.
,
Parry
,
D.
a.
D.
,
Goodship
,
A. E.
,
Shah
,
J.
, and
Silver
,
I. A.
,
1985
, “
Development of Collagen Fibril Organization and Collagen Crimp Patterns During Tendon Healing
,”
Int. J. Biol. Macromol.
,
7
(
5
), pp.
275
282
.10.1016/0141-8130(85)90025-X
31.
Maganaris
,
C. N.
,
Narici
,
M. V.
, and
Reeves
,
N. D.
,
2004
, “
In Vivo Human Tendon Mechanical Properties: Effect of Resistance Training in Old Age
,”
J. Musculoskelet. Neuronal Interact
,
4
(
2
), pp.
204
208
.
32.
Maganaris
,
C. N.
, and
Paul
,
J. P.
,
1999
, “
In Vivo Human Tendon Mechanical Properties
,”
J. Physiol.
,
521
, pp.
307
313
.10.1111/j.1469-7793.1999.00307.x
33.
Scott
,
T. R.
,
Bhadra
,
N.
,
Kilgore
,
K. L.
, and
Peckham
,
P. H.
,
1997
, “
The Monitoring of Tendon Tension With an Implantable Intratendon Probe and Its Use in the Control of Neuroprostheses
,”
IEEE Trans. Rehabil. Eng.
,
5
(
2
), pp.
233
235
.10.1109/86.593303
34.
Sheehan
,
F. T.
, and
Drace
,
J. E.
,
2000
, “
Human Patellar Tendon Strain. A Noninvasive, In Vivo Study
,”
Clin. Orthop. Relat. Res.
,
370
, pp.
201
207
.10.1097/00003086-200001000-00019
You do not currently have access to this content.