An analytical approach which is popular in micromechanical studies has been extended to the solution for the interference fit problem of the femoral stem in cementless total hip arthroplasty (THA). The multiple inhomogeneity problem of THA in transverse plane, including an elliptical stem, a cortical wall, and a cancellous layer interface, was formulated using the equivalent inclusion method (EIM) to obtain the induced interference elastic fields. Results indicated a maximum interference fit of about 210 μm before bone fracture, predicted based on the Drucker–Prager criterion for a partially reamed section. The cancellous layer had a significant effect on reducing the hoop stresses in the cortical wall; the maximum press fit increased to as high as 480 μm for a 2 mm thick cancellous. The increase of the thickness and the mechanical quality, i.e., stiffness and strength, of the cortical wall also increased the maximum interference fit before fracture significantly. No considerable effect was found for the implant material on the maximum allowable interference fit. It was concluded that while larger interference fits could be adapted for younger patients, care must be taken when dealing with the elderly and those suffering from osteoporosis. A conservative reaming procedure is beneficial for such patients; however, in order to ensure sufficient primary stability without risking bone fracture, a preoperative analysis might be necessary.

References

References
1.
Kim
,
Y. H.
,
Oh
,
S. H.
,
Kim
,
J. S.
,
2003
, “
Primary Total Hip Arthroplasty with a Second-Generation Cementless Total Hip Prosthesis in Patients Younger Than Fifty Years of Age
,”
J. Bone Jt. Surg.
,
85A
, pp.
109
114
.
2.
Berry
,
D. J.
,
1999
, “
Epidemiology of Periprosthetic Fractures After Major Joint Replacement: Hip and Knee
,”
Orthop. Clin. North Am.
,
30
, pp.
183
190
.10.1016/S0030-5898(05)70073-0
3.
Lindahl
,
H.
,
2007
, “
Epidemiology of Periprosthetic Femur Fracture Around a Total Hip Arthroplasty
,”
Injury
,
38
, pp.
651
654
.10.1016/j.injury.2007.02.048
4.
Keith
,
B.
, and
Lombardi
,
A.
,
2010
, “
Intraoperative Femur Fracture is Associated with Stem and Instrument Design in Primary Total Hip Arthroplasty
,”
Clin. Orthop. Relat. Res.
,
468
(
9
), pp.
2377
2381
.10.1007/s11999-010-1314-8
5.
Otani
,
T.
,
Whiteside
,
L. A.
,
White
,
S. E.
, and
McCarthy
,
D. S.
,
1995
, “
Reaming Technique of the Femoral Diaphysis in Cementless Total Hip Arthroplasty
,”
Clin. Orthop. Relat. Res.
,
311
, pp.
210
221
.
6.
Blaha
,
J. D.
,
2007
, “
Press-Fit Components
,”
The Adult Hip
,
J J.
Callaghan
,
A. G.
Rosenberg
, and
H. E.
Rubash
, eds.,
Lippincott-Raven
,
Philadelphia
, pp.
1085
1091
.
7.
Jasty
,
M.
,
O'Connor
,
D. O.
,
Henshaw
,
R. M.
,
Harrigan
,
T. P.
, and
Harris
,
W. H.
,
1994
, “
Fit of the Uncemented Femoral Component and the Use of Cement Influence the Strain Transfer the Femoral Cortex
,”
J. Orthop. Res.
,
12
(
5
), pp.
648
656
.10.1002/jor.1100120507
8.
Norman
,
T. L.
,
Ackerman
,
E. S.
,
Smith
,
T. S.
,
Gruen
,
T. A.
,
Yates
,
A. J.
,
Blaha
,
J. D.
, and
Kish
,
V. L.
,
2006
, “
Cortical Bone Viscoelasticity and Fixation Strength of Press-Fit Femoral Stems: an In-Vitro Model
,”
ASME J. Biomech. Eng.
,
128
(
1
), pp.
13
17
.10.1115/1.2133766
9.
Shultz
,
T. R.
,
Blaha
,
J. D.
,
Gruen
,
T. A.
, and
Norman
,
T. L.
,
2006
, “
Cortical Bone Viscoelasticity and Fixation Strength of Press-Fit Femoral Stems: A Finite Element Model
,”
ASME J. Biomech. Eng.
,
128
(
1
), pp.
7
12
.10.1115/1.2133765
10.
Abdul-Kadir
,
M. R.
,
Hansen
,
U.
,
Klabunde
,
R.
,
Lucas
,
D.
, and
Amis
,
A.
,
2008
, “
Finite Element Modeling of Primary Hip Stem Stability: The Effect of Interference Fit
,”
J. Biomech.
,
41
, pp.
587
594
.10.1016/j.jbiomech.2007.10.009
11.
Hu
,
K.
,
Zhang
,
X.
,
Zhu
,
J.
,
Wang
,
C.
,
Ji
,
W.
, and
Bai
,
X.
,
2010
, “
Periprosthetic Fractures May be More Likely in Cementless Femoral Stems with Sharp Edges
,”
Ir. J. Med. Sci.
,
179
, pp.
417
421
.10.1007/s11845-009-0442-1
12.
Ramamurti
,
B. S.
,
Orr
,
T. E.
,
Bragdon
,
C. R.
,
Lowenstein
,
J. D.
,
Jasty
,
M.
, and
Harris
,
W. H.
,
1997
, “
Factors Influencing Stability at the Interface Between a Porous Surface and Cancellous Bone: A Finite Element Analysis of a Canine In Vivo Micromotion Experiment
,”
J. Biomed. Mater. Res.
,
36
(
2
), pp.
274
280
.10.1002/(SICI)1097-4636(199708)36:2<274::AID-JBM17>3.0.CO;2-G
13.
Viceconti
,
M.
,
Muccini
,
R.
,
Bernakiewicz
,
M.
,
Baleani
,
M.
, and
Cristofolini
,
L.
,
2000
, “
Large-Sliding Contact Elements Accurately Predict Levels of Bone–Implant Micromotion Relevant to Osseointegration
,”
J. Biomech.
,
33
, pp.
1611
1618
.10.1016/S0021-9290(00)00140-8
14.
Aamodt
,
A.
,
Kvistad
,
K. A.
,
Andersen
,
E.
,
Lund-Larsen
,
J.
,
Eine
,
J.
,
Benum
,
P.
, and
Husby
,
O. S.
,
1999
, “
Determination of the Hounsfield Value for CT–Based Design of Custom Femoral Stems
,”
J. Bone Jt. Surg.
,
81
(
1
), pp.
143
147
.10.1302/0301-620X.81B1.8880
15.
Doblare
,
M.
,
Garcia
,
J. M.
, and
Gomez
,
M. J.
,
2004
, “
Modelling Bone Tissue Fracture and Healing: A Review
,”
Eng. Fract. Mech.
,
71
, pp.
1809
1840
.10.1016/j.engfracmech.2003.08.003
16.
Cowin
,
S. C.
, and
He
,
Q.-C.
,
2005
, “
Tensile and Compressive Stress Yield Criteria for Cancellous Bone
,”
J. Biomech.
,
38
, pp.
141
144
.10.1016/j.jbiomech.2004.03.003
17.
Natali
,
A. N.
,
Carniel
,
E. L.
, and
Pavan
,
P. G.
,
2008
, “
Constitutive Modelling of Inelastic Behaviour of Cortical Bone
,”
Med. Eng. Phys.
,
30
, pp.
905
912
.10.1016/j.medengphy.2007.12.001
18.
Chang
,
W. C. W.
,
Christensen
,
T. M.
,
Pinilla
,
T. R.
, and
Keaveny
,
T. M.
,
1999
, “
Isotropy of Uniaxial Yield Strains for Bovine Trabecular Bone
,”
J. Orthop. Res.
,
17
, pp.
582
585
.10.1002/jor.1100170418
19.
Morgan
,
E. F.
, and
Keaveny
,
T. M.
,
2001
, “
Dependence of Yield Strain of Human Trabecular Bone on Anatomic Site
,”
J. Biomech.
,
34
, pp.
569
577
.10.1016/S0021-9290(01)00011-2
20.
Fenech
,
C. M.
, and
Keaveny
,
T. M.
,
1999
, “
A Cellular Solid Criterion for Predicting the Axial-Shear Failure Properties of Bovine Trabecular Bone
,”
J. Biomech. Eng.
,
121
, pp.
414
422
.10.1115/1.2798339
21.
Hayes
,
W. C.
, and
Wright
,
T. M.
,
1977
, “
An Empirical Strength Theory for Compact Bone
,”
Fracture
,
3
, pp.
1173
1179
.
22.
Tai
,
K.
,
Ulm
,
F. J.
, and
Ortiz
,
C.
,
2006
, “
Nanogranular Origins of the Strength of Bone
,”
Nano Lett.
,
6
(
11
), pp.
2520
2525
.10.1021/nl061877k
23.
Mercer
,
C.
,
He
,
M. Y.
,
Wang
,
R.
, and
Evans
,
A. G.
,
2006
, “
Mechanisms Governing the Inelastic Deformation of Cortical Bone and Application to Trabecular Bone
,”
Acta Biomater.
,
2
(
1
), pp.
59
68
.10.1016/j.actbio.2005.08.004
24.
Mullins
,
L. P.
,
Bruzzi
,
M. S.
, and
McHugh
,
P. E.
,
2009
, “
Calibration of a Constitutive Model for the Post-Yield Behaviour of Cortical Bone
,”
J. Mech. Behav. Biomed.
,
2
, pp.
460
470
.10.1016/j.jmbbm.2008.11.003
25.
Carnelli
,
D.
,
Gastaldi
,
D.
,
Sassi
,
V.
,
Contro
,
R.
,
Ortiz
,
C.
, and
Vena
,
P.
,
2010
, “
A Finite Element Model for Direction-Dependent Mechanical Response to Nanoindentation of Cortical Bone Allowing for Anisotropic Post-Yield Behavior of the Tissue
,”
J. Biomech. Eng.
,
132
, pp.
1
10
.10.1115/1.4001358
26.
Bessho
,
M.
,
Ohnishi
,
I.
,
Matsuyama
,
J.
,
Matsumoto
,
T.
,
Imai
,
K.
, and
Nakamura
,
K.
,
2007
, “
Prediction of Strength and Strain of the Proximal Femur by a CT-Based Finite Element Method
,”
J. Biomech.
,
40
, pp.
1745
1753
.10.1016/j.jbiomech.2006.08.003
27.
Kelly
,
N.
, and
McGarry
,
J. P.
,
2012
, “
Experimental and Numerical Characterisation of the Elasto-Plastic Properties of Bovine Trabecular Bone and a Trabecular Bone Analogue
,”
J. Mech. Behav. Biomed.
,
9
, pp.
184
197
.10.1016/j.jmbbm.2011.11.013
28.
Eshelby
,
J. D.
,
1957
, “
The Determination of the Elastic Field of an Ellipsoidal Inclusion, and Related Problems
,”
Proc. R. Soc. London, Ser. A
,
241
, pp.
376
396
.10.1098/rspa.1957.0133
29.
Mura
,
T.
,
1987
,
Micromechanics of Defects in Solids
,
2nd ed.
,
Martinus Nijhoff
,
Dordrecht, The Netherlands
.
30.
Mura
,
T.
,
Shodja
,
H. M.
, and
Hirose
,
Y.
,
1996
, “
Inclusion Problems
,”
Appl. Mech. Rev.
,
49
, pp.
118
127
.10.1115/1.3101963
31.
Shodja
,
H. M.
, and
Sarvestani
,
A. S.
,
2001
, “
Elastic Fields in Double Inhomogeneity by the Equivalent Inclusion Method
,”
J. Appl. Mech.
,
68
(
3
), pp.
3
10
.10.1115/1.1346680
32.
Burstein
,
A. H.
,
Reilly
,
D. T.
, and
Martens
,
M.
,
1976
, “
Aging of Bone Tissue: Mechanical Properties
,”
J. Bone Jt. Surg.
,
58
(
1
), pp.
82
86
.
33.
Reilly
,
D. T.
, and
Burstein
,
A. H.
,
1975
, “
The Elastic and Ultimate Properties of Compact Bone Tissue
,”
J. Biomech.
,
8
(
6
), pp.
393
405
.10.1016/0021-9290(75)90075-5
34.
Schreiber
,
J. J.
,
Anderson
,
P. A.
,
Rosas
,
H. G.
,
Buchholz
,
A. L.
, and
Au
,
A.G.
,
2011
, “
Hounsfield Units for Assessing Bone Mineral Density and Strength: A Tool for Osteoporosis Management
,”
J. Bone Joint Surg. Am.
,
93
(
11
), pp.
57
63
.10.2106/JBJS.J.00160
35.
Rho
,
J. Y.
,
Hobatho
,
M. C.
, and
Ashman
,
R. B.
,
1995
, “
Relations of Mechanical Properties to Density and CT Numbers in Human Bone
,”
Med. Eng. Phys.
,
17
(
5
), pp.
347
355
.10.1016/1350-4533(95)97314-F
36.
Chen
,
E. J.
,
Novakofski
,
J.
,
Jenkins
,
W. K.
, and
O'Brien
,
W. D.
, Jr.
,
1996
, “
Young's Modulus Measurements of Soft Tissues with Application to Elasticity Imaging
,”
IEEE Trans. Ultrason. Ferroelectr. Freq. Control.
,
43
(
1
), pp.
191
194
.10.1109/58.484478
37.
Keyak
,
J. H.
, and
Rossi
,
S. A.
,
2000
, “
Prediction of Femoral Fracture Load Using Finite Element Models: An Examination of Stress- and Strain-Based Failure Theories
,”
J. Biomech.
,
33
, pp.
209
214
.10.1016/S0021-9290(99)00152-9
38.
Shokrolahi-Zadeh
,
B.
, and
Shodja
,
H. M.
,
2008
, “
Spectral Equivalent Inclusion Method: Anisotropic Cylindrical Multi-Inhomogeneities
,”
J. Mech. Phys. Solids
,
56
, pp.
3565
3575
.10.1016/j.jmps.2008.04.008
39.
Meek
,
R. M.
,
Garbuz
,
D. S.
,
Masri
,
B. A.
,
Greidanus
,
N. V.
, and
Duncan
,
C. P.
,
2004
, “
Intraoperative Fracture of the Femur in Revision Total Hip Arthroplasty with a Diaphyseal Fitting Stem
,”
J. Bone Jt. Surg.
,
86A
(
3
), pp.
480
485
.
40.
Davidson
,
D.
,
Pike
,
J.
,
Garbuz
,
D.
,
Duncan
,
C. P.
, and
Masri
,
B. A.
,
2008
, “
Intraoperative Periprosthetic Fractures during Total Hip Arthroplasty: Evaluation and Management
,”
J. Bone Jt. Surg.
,
90
, pp.
2000
2012
.10.2106/JBJS.H.00331
41.
Mai
,
K. T.
,
Verioti
,
C. A.
,
Casey
,
K.
,
Slesarenko
,
Y.
,
Romeo
,
L.
, and
Colwell
,
C. W.
, Jr.
,
2010
, “
Cementless Femoral Fixation in Total Hip Arthroplasty
,”
Am. J. Orthop.
,
39
(
3
), pp.
126
130
.
42.
Viceconti
,
M.
,
Zannoni
,
C.
,
Pierotti
,
L.
, and
Casali
,
M.
,
1999
, “
Spatial Positioning of an Hip Stem Solid Model within the CT Data Set of the Host Bone
,”
Comput. Meth. Prog. Biomed.
,
58
, pp.
219
226
.10.1016/S0169-2607(98)00089-3
43.
Adam
,
F.
,
Hammer
,
D. S.
,
Pape
,
D.
, and
Kohn
,
D.
,
2002
, “
Femoral Anatomy, Computed Tomography and Computer Aided Design of Prosthetic Implants
,”
Arch. Orthop. Trauma Surg.
,
122
(
5
), pp.
262
268
.10.1007/s00402-001-0361-8
44.
Kefalas
,
V.
, and
Eftaxiopoulos
,
D. A.
,
2012
, “
Experimental Study of Cancellous Bone Under Large Strains and a Constitutive Probabilistic Model
,”
J. Mech. Behav. Biomed.
,
6
, pp.
41
52
.10.1016/j.jmbbm.2011.10.006
45.
Charlebois
,
M.
,
Pretterklieber
,
M.
, and
Zysset
,
P. K.
,
2010
, “
The Role of Fabric in the Large Strain Compressive Behavior of Human Trabecular Bone
,”
ASME J. Biomech. Eng.
,
132
, pp.
1006
1015
.10.1115/1.4001361
46.
Nalla
,
R. K.
,
Kinney
,
J. H.
, and
Ritchie
,
R. O.
,
2003
, “
Mechanistic Fracture Criteria for the Failure of Human Cortical Bone
,”
Nature Mater.
,
2
, pp.
164
168
.10.1038/nmat832
47.
Shirazi-Adl
,
A.
,
Dammak
,
M.
, and
Zukor
,
D. J.
,
1994
, “
Fixation Pull-Out Response Measurement of Bone Screws and Porous-Surfaced Posts
,”
J. Biomech.
,
27
(
10
), pp.
1249
1258
.10.1016/0021-9290(94)90278-X
48.
Vail
,
T. P.
,
Glisson
,
R. R.
,
Koukoubis
,
T. D.
, and
Guilak
,
F.
,
1998
, “
The Effect of Hip Stem Material Modulus on Surface Strain in Human Femora
,”
J. Biomech.
,
31
, pp.
619
628
.10.1016/S0021-9290(98)00061-X
You do not currently have access to this content.