The biomechanics and function of the anterior cruciate ligament (ACL) have been widely studied using both experimental and simulation methods. It is known that a constitutive model of joint tissue is a critical factor in the numerical simulation. Some different ligament constitutive models have been presented to describe the ACL material behavior. However, the effect of the variation in the ligament constitutive model on joint kinematics and biomechanics has still not been studied. In this paper, a three-dimensional finite element model of an intact tibiofemoral joint was reconstructed. Three ACL constitutive models were compared under different joint loads (such as anterior tibial force, varus tibial torque, and valgus tibial torque) to investigate the effect of the change of the ACL constitutive model. The three constitutive models corresponded to an isotropic hyperelasticity model, a transversely isotropic hyperelasticity model with neo-Hookean ground substance description, and a transversely isotropic hyperelastic model with nonlinear ground substance description. Although the material properties of these constitutive equations were fitted on the same uniaxial tension stress-strain curve, the change of the ACL material constitutive model was found to induce altered joint kinematics and biomechanics. The effect of different ACL constitutive equations on joint kinematics depended on both deformation direction and load type. The variation in the ACL constitutive models would influence the joint kinematic results greatly in both the anterior and internal directions under anterior tibial force as well as some other deformations such as the anterior and medial tibial translations under valgus tibial torque, and the medial tibial translation and internal rotation under varus torque. It was revealed that the transversely isotropic hyperelastic model with nonlinear ground substance description (FE model III) was the best representation of the realistic ACL property by a linear regression between the simulated and the experiment deformation results. But the comparison of the predicted and experiment force of ligaments showed that all the three ACL constitutive models represented similar force results. The stress value and distribution of ACL were also altered by the change in the constitutive equation. In brief, although different ACL constitutive models have been fitted using the same uniaxial tension curve and have the similar longitudinal material property, the ACL constitutive equation should still be carefully chosen to investigate joint kinematics and biomechanics due to the different transverse material behavior.

References

References
1.
Bendjaballah
,
M. Z.
,
Shirazi-Adl
,
A.
, and
Zukor
,
D. J.
,
1995
, “
Biomechanics of the Human Knee Joint in Compression Reconstruction Mesh Generation and Finite Element Analysis
,”
Knee
,
2
(
2
), pp.
69
79
.10.1016/0968-0160(95)00018-K
2.
Bendjaballah
,
M. Z.
,
Shirazi-Adl
,
A.
, and
Zukor
,
D. J.
,
1997
, “
Finite Element Analysis of Human Knee Joint in Varus-Valgus
,”
Clin. Biomech.
,
12
(
3
), pp.
139
148
.10.1016/S0268-0033(97)00072-7
3.
Jilani
,
A.
,
Shirazi-Adl
,
A.
, and
Bendjaballah
,
M. Z.
,
1997
, “
Biomechanics of Human Tibio-Femoral Joint in Axial Rotation
,”
Knee
,
4
, pp.
203
213
.10.1016/S0968-0160(97)00266-4
4.
Lipke
,
J. M.
,
Janecki
,
C. J.
,
Nelson
,
C. L.
,
Mcleod
,
P.
,
Thompson
,
C.
,
Thompson
,
J.
, and
Haynes
,
D. W.
,
1981
, “
The Role of Incompetence of the Anterior Cruciate and Lateral Ligaments in Anterolateral and Anteromedial Instability: A Biomechanical Study of Cadaver Knees
,”
J. Bone Joint Surg.
,
63-A
(
6
), pp.
954
960
.
5.
Markolf
,
K. L.
,
Bargar
,
W. L.
,
Shoemaker
,
S. C.
, and
Amstutz
,
H. C.
,
1981
, “
The Role of Joint Load in Knee Stability
,”
J. Bone Joint. Surg.
,
63-A
(
4
), pp.
570
585
.
6.
Kanamori
,
A.
,
Woo
,
S. L.
,
Ma
,
C. B.
,
Zeminski
,
J.
,
Rudy
,
T. W.
,
Li
,
G.
, and
Livesay
,
G. A.
,
2000
, “
The Forces in the Anterior Cruciate Ligament and Knee Kinematics During a Simulated Pivot Shift Test A Human Cadaveric Study Using Robotic Technology
,”
Arthroscopy: J. Relat. Surg.
,
16
(
6
), pp.
633
639
.10.1053/jars.2000.7682
7.
Mesfar
,
W.
, and
Shirazi-Adl
,
A.
,
2006
, “
Biomechanics of Changes in ACL and PCL Material Properties or Prestrains in Flexion Under Muscle Force-Implications in Ligament Reconstruction
,”
Comput. Methods Biomech. Biomed. Eng.
,
9
, pp.
201
209
.10.1080/10255840600795959
8.
Moglo
,
K. E.
, and
Shirazi-Adl
,
A.
,
2003
, “
Biomechanics of Passive Knee Joint in Drawer Load Transmission in Intact and ACL Deficient Joints
,”
Knee
,
10
, pp.
265
276
.10.1016/S0968-0160(02)00135-7
9.
Pena
,
E.
,
Calvo
,
B.
,
Martinez
,
M. A.
, and
Doblare
,
M.
,
2006
, “
A Three-Dimensional Finite Element Analysis of the Combined Behavior of Ligaments and Menisci in the Healthy Human Knee Joint
,”
J. Biomech.
,
39
, pp.
1686
1701
.10.1016/j.jbiomech.2005.04.030
10.
Piziali
,
R. L.
,
Rastegar
,
J.
,
Nagel
,
D. A.
, and
Schurman
,
D. J.
,
1980
, “
The Contribution of the Cruciate Ligaments to the Load-Displacement Characteristics of the Human Knee Joint
,”
J. Biomech. Eng.
,
102
, pp.
277
283
.10.1115/1.3138223
11.
Gollehon
,
D. L.
,
Torzilli
,
P. A.
, and
Warren
,
R. F.
,
1987
, “
The Role of the Posterolateral and Cruciate Ligaments in the Stability of the Human Knee: A Biomechanical Study
,”
J. Bone Joint Surg.
,
69-A
(
2
), pp.
233
242
.
12.
Markolf
,
K. L.
,
Gorek
,
J. F.
,
Kabo
,
J. M.
, and
Shapiro
,
M. S.
,
1990
, “
Direct Measurement of Resultant Forces in the Anterior Cruciate Ligament an In Vitro Study Performed With a New Experimental Technique
,”
J. Bone Joint Surg.
,
72-A
(
4
), pp.
557
567
.
13.
Shapiro
,
M. S.
,
Markolf
,
K. L.
,
Finerman
,
G. A. M.
, and
Mitchell
,
A. P. W.
,
1991
, “
The Effect of Section of the Medial Collateral Ligament on Force Generated in the Anterior Cruciate Ligament
,”
J. Bone Joint Surg.
,
73-A
(
2
), pp.
248
256
.
14.
Song
,
Y.
,
Debski
,
R. E.
,
Musahl
,
V.
,
Thomas
,
M.
, and
Woo
,
S. L. Y.
,
2004
, “
A Three-Dimensional Finite Element Model of the Human Anterior Cruciate Ligament a Computational Analysis With Experimental Validation
,”
J. Biomech.
,
37
, pp.
383
390
.10.1016/S0021-9290(03)00261-6
15.
Gabriel
,
M. T.
,
Wong
,
E. K.
,
Woo
,
S. L.
,
Yagi
,
M.
, and
Debski
,
R. E.
,
2004
, “
Distribution of In Situ Forces in the Anterior Cruciate Ligament in Response to Rotatory Loads
,”
J. Orthop. Res.
,
22
, pp.
85
89
.10.1016/S0736-0266(03)00133-5
16.
Weiss
,
J. A.
,
Maker
,
B. N.
, and
Govindjee
,
S.
,
1996
, “
Finite Element Implementation of Incompressible, Ransversely Isotropic Hyperelasticity
,”
Comput. Meth. Appl. Mech. Eng.
,
135
, pp.
107
128
.10.1016/0045-7825(96)01035-3
17.
Weiss
,
J. A.
,
Gardiner
,
J. C.
, and
Bonifasi-Lista
,
C.
,
2002
, “
Ligament Material Behavior is Nonlinear, Viscoelastic and Rate-Independent Under Shear Loading
,”
J. Biomech.
,
35
, pp.
943
950
.10.1016/S0021-9290(02)00041-6
18.
Gardiner
,
J. C.
, and
Weiss
,
J. A.
,
2003
, “
Subject-Specific Finite Element Analysis of the Human Medial Collateral Ligament During Valgus Knee Loading
,”
J. Orthop. Res.
,
21
, pp.
1098
1106
.10.1016/S0736-0266(03)00113-X
19.
Ramaniraka
,
N. A.
,
Terrier
,
A.
,
Theumann
,
N.
, and
Siegrist
,
O.
,
2005
, “
Effects of the Posterior Cruciate Ligament Reconstruction on the Biomechanics of the Knee Joint a Finite Element Analysis
,”
Clin. Biomech.
,
20
, pp.
434
442
.10.1016/j.clinbiomech.2004.11.014
20.
Pena
,
E.
,
Martinez
,
M. A.
,
Calvo
,
B.
,
Palanca
,
D.
, and
Doblare
,
M.
,
2005
, “
A Finite Element Simulation of the Effect of Graft Stiffness and Graft Tensioning in ACL Reconstruction
,”
Clin. Biomech.
,
20
, pp.
636
644
.10.1016/j.clinbiomech.2004.07.014
21.
Pena
,
E.
,
Calvo
,
B.
,
Martinez
,
M. A.
,
Palanca
,
D.
, and
Doblare
,
M.
,
2006
, “
Influence of the Tunnel Angle in ACL Reconstructions on the Biomechanics of the Knee Joint
,”
Clin. Biomech.
,
21
, pp.
508
516
.10.1016/j.clinbiomech.2005.12.013
22.
Quapp
,
K. M.
, and
Weiss
,
J. A.
,
1998
, “
Material Characterization of Human Medial Collateral Ligament
,”
J. Biomech. Eng.
,
120
, pp.
757
763
.10.1115/1.2834890
23.
Wan
,
C.
,
Hao
,
Z. X.
, and
Wen
,
S. Z.
,
2012
, “
The Joint Biomechanics Change by Different Anterior Cruciate Ligament Constitutive Models Under Axial Torque Load
,”
Proceedings of the ASME 2012 International Mechanical Engineering Congress and Exposition
,
Houston, TX
.
24.
Dassault Systèmes
,
2010
,
ABAQUS, Version 6.10 Documentation
,
ABAQUS Analysis Manual, Dassault Systèmes
,
Providence, RI
.
25.
Hao
,
Z. X.
,
Wan
,
C.
,
Gao
,
X. F.
, and
Ji
,
T.
,
2011
, “
The Effect of Boundary Condition on the Biomechanics of a Human Pelvic Joint Under an Axial Compressive Load: A Three-Dimensional Finite Element Model
,”
J. Biomech. Eng.
,
133
, p.
101006
.10.1115/1.4005223
26.
Jacobs
,
C. R.
,
1994
, “
Numerical Simulation of Bone Adaption to Mechanical Loading
,” Ph.D. thesis, Stanford University, Stanford, CA.
27.
Armstrong
,
C. G.
,
Lai
,
W. M.
, and
Mow
,
V. C.
,
1984
, “
An Analysis of the Unconfined Compression of Articular Cartilage
,”
J. Biomech. Eng.
,
106
(
2
), pp.
165
173
.10.1115/1.3138475
28.
Donzelli
,
P.
,
Spilker
,
R. S.
,
Ateshian
,
G. A.
, and
Mow
,
V. C.
,
1999
, “
Contact Analysis of Biphasic Transversely Isotropic Cartilage Layers and Correlation With Tissue Failure
,”
J. Biomech.
,
32
, pp.
1037
1047
.10.1016/S0021-9290(99)00106-2
29.
Li
,
G.
,
Lopez
,
O.
, and
Rubash
,
H.
,
2001
, “
Variability of a Three-Dimensional Finite Element Model Constructed Using Magnetic Resonance Images of a Knee for Joint Contact Stress Analysis
,”
J. Biomech. Eng.
,
123
, pp.
341
346
.10.1115/1.1385841
30.
LeRoux
,
M. A.
, and
Setton
,
L. A.
,
2002
, “
Experimental and Biphasic FEM Determinations of the Material Properties and Hydraulic Permeability of the Meniscus in Tension
,”
J. Biomech. Eng.
,
124
, pp.
315
321
.10.1115/1.1468868
31.
Marlow
,
R. S.
,
2003
, “
A General First-Invariant Hyperelastic Constitutive Model
,”
Constitutive Models for Rubber III
,
J.
Busfield
and
A. H.
Muhr
, eds.,
Taylor and Francis
,
New York
.
32.
Gough
,
J.
,
Gregory
,
I. H.
, and
Muhr
,
A. H.
,
1999
,
Determination of Constitutive Equations for Vulcanized Rubber. Finite Element Analysis of Elastomers
,
Professional Engineering Publishing
,
London
.
33.
Grood
,
E. S.
, and
Suntay
,
W. J.
,
1983
, “
A Joint Coordinate System for the Clinical Description of Three-Dimensional Motions: Application to the Knee
,”
J. Biomech. Eng.
,
105
, pp.
136
144
.10.1115/1.3138397
34.
Li
,
G.
,
Papannagari
,
R.
,
DeFrate
,
L. E.
,
Yoo
,
J. D.
,
Park
,
S. E.
, and
Gill
,
T. J.
,
2007
, “
The Effects of ACL Deficiency on Mediolateral Translation and Varus-Valgus Rotation
,”
Acta Orthop.
,
78
(
3
), pp.
355
360
.10.1080/17453670710013924
35.
Diermann
,
N.
,
Schumacher
,
T.
,
Schanz
,
S.
,
Raschke
,
M. J.
,
Petersen
,
W.
, and
Zantop
,
T.
,
2009
, “
Rotational Instability of the Knee Internal Tibial Rotation Under a Simulated Pivot Shift Test
,”
Arch. Orthop. Trauma Surg.
,
129
, pp.
353
358
.10.1007/s00402-008-0681-z
36.
Askew
,
M. J.
,
Melby
,
A. I.
, and
Brower
,
R. S.
,
1990
, “
Knee Mechanics a Review of In Vitro Simulations of Clinical Laxity Tests
,”
Articular Cartilage and Knee Joint Function: Basic Science and Arthoscopy
,
J. W.
Ewing
, ed.,
Raven Press
,
New York
, pp.
249
266
.
37.
Beasley
,
L. S.
,
Weiland
,
D. E.
,
Vidal
,
A. F.
,
Chhabra
,
A.
,
Herzka
,
A. S.
,
Feng
,
M. T.
, and
West
,
R. V.
,
2005
, “
Anterior Cruciate Ligament Reconstruction: A Literature Review of the Anatomy, Biomechanics, Surgical Considerations, and Clinical Outcomes
,”
Oper. Tech. Orthop.
,
15
, pp.
5
19
.10.1053/j.oto.2004.11.003
38.
Fu
,
F. H.
,
Bennett
,
C. H.
,
Lattermann
,
C.
, and
Ma
,
C. B.
,
1999
, “
Biomechanics Current Trends in Anterior Cruciate Ligament Reconstruction—Part 1: Biology and Biomechanics of Reconstruction
,”
Am. J. Sports Med.
,
27
(
6
), pp.
821
830
.
39.
Grood
,
E. S.
,
Noyes
,
F. R.
,
Butler
,
D. L.
, and
Suntay
,
W. J.
,
1981
, “
Ligamentous and Capsular Restraints Preventing Straight Medial and Lateral Laxity in Intact Human Cadaver Knees
,”
J. Bone Joint Surg.
,
63-A
(
8
), pp.
1257
1269
.
40.
Hollis
,
J. M.
,
Takai
,
S.
,
Adams
,
D. J.
,
Horibe
,
S.
, and
Woo
,
S. L.-Y.
,
1991
, “
The Effect of Knee Motion and External Loading on the Length of the Anterior Cruciate Ligament (ACL): A Kinematic Study
,”
J. Biomech. Eng.
,
113
, pp.
208
214
.10.1115/1.2891236
41.
Limbert
,
G.
,
Taylor
,
M.
, and
Middleton
,
J.
,
2004
, “
Three-Dimensional Finite Element Modeling of the Human ACL: Simulation of Passive Knee Flexion With a Stressed and Stress-Free ACL
,”
J. Biomech.
,
37
, pp.
1723
1731
.10.1016/j.jbiomech.2004.01.030
You do not currently have access to this content.