The use of computational modeling to predict injury mechanisms and severity has recently been investigated, but few models report failure level ligament strains. The hypothesis of the study was that models built off neutral ankle experimental studies would generate the highest ligament strain at failure in the anterior deltoid ligament, comprised of the anterior tibiotalar ligament (ATiTL) and tibionavicular ligament (TiNL). For models built off everted ankle experimental studies the highest strain at failure would be developed in the anterior tibiofibular ligament (ATiFL). An additional objective of the study was to show that in these computational models ligament strain would be lower when modeling a partial versus complete ligament rupture experiment. To simulate a prior cadaver study in which six pairs of cadaver ankles underwent external rotation until gross failure, six specimen-specific models were built based on computed tomography (CT) scans from each specimen. The models were initially positioned with 20 deg dorsiflexion and either everted 20 deg or maintained at neutral to simulate the cadaver experiments. Then each model underwent dynamic external rotation up to the maximum angle at failure in the experiments, at which point the peak strains in the ligaments were calculated. Neutral ankle models predicted the average of highest strain in the ATiTL (29.1 ± 5.3%), correlating with the medial ankle sprains in the neutral cadaver experiments. Everted ankle models predicted the average of highest strain in the ATiFL (31.2 ± 4.3%) correlating with the high ankle sprains documented in everted experiments. Strains predicted for ligaments that suffered gross injuries were significantly higher than the strains in ligaments suffering only a partial tear. The correlation between strain and ligament damage demonstrates the potential for modeling to provide important information for the study of injury mechanisms and for aiding in treatment procedure.

References

1.
Waterman
,
B. R.
,
Belmont
,
P. J.
Jr.
,
Cameron
,
K. L.
,
DeBerardino
,
T. M.
, and
Owens
,
B. D.
,
2010
, “
Epidemiology of Ankle Sprain at the United States Military Academy
,”
Am. J. Sports Med.
,
38
(
4
), pp.
797
803
.10.1177/0363546509350757
2.
Colville
,
M. R.
,
Marder
,
R. A.
,
Boyle
,
J. J.
, and
Zarins
,
B.
,
1990
, “
Strain-Measurement in Lateral Ankle Ligaments
,”
Am. J. Sports Med.
,
18
(
2
) pp.
196
200
.10.1177/036354659001800214
3.
Wolfe
,
M. W.
,
Uhl
,
T. L.
,
Mattacola
,
C. G.
, and
McCluskey
,
L. C.
,
2001
, “
Management of Ankle Sprains
,”
Am. Family Physician
,
64
(
3
), pp.
93
104
.
4.
Dattani
,
R.
,
Patnaik
,
S.
,
Kantak
,
A.
,
Srikanth
,
B.
, and
Selvan
,
T. P.
,
2008
, “
Injuries to the Tibiofibular Syndesmosis
,”
Br. J. Bone Jt. Surg.
,
90B
(
4
), pp.
405
410
.10.1302/0301-620X.90B4.19750
5.
Hopkinson
,
W. J.
,
Stpierre
,
P.
,
Ryan
,
J. B.
, and
Wheeler
,
J. H.
,
1990
, “
Syndesmosis Sprains of the Ankle
,”
Foot & Ankle
,
10
(
6
), pp.
325
330
.10.1177/107110079001000607
6.
Guise
,
E. R.
,
1976
, “
Rotational Ligamentous Injuries to the Ankle in Football
,”
Am. J. Sports Med.
,
4
(
1
), pp.
1
6
.10.1177/036354657600400101
7.
Williams
,
G. N.
,
Jones
,
M. H.
, and
Amendola
,
A.
,
2007
, “
Syndesmotic Ankle Sprains in Athletes
,”
Am. J. Sports Med.
,
35
(
7
), pp.
1197
1207
.10.1177/0363546507302545
8.
Boytim
,
M. J.
,
Fischer
,
D. A.
, and
Neumann
,
L.
,
1991
, “
Syndesmotic Ankle Sprains
,”
Am. J. Sports Med.
,
19
(
3
), pp.
294
298
.10.1177/036354659101900315
9.
Waterman
,
B. R.
,
Belmont
,
P. J.
Jr.
,
Cameron
,
K. L.
,
Svoboda
,
S. J.
,
Alitz
,
C. J.
, and
Owens
,
B. D.
,
2011
, “
Risk Factors for Syndesmotic and Medial Ankle Sprain Role of Sex, Sport, and Level of Competition
,”
Am. J. Sports Med.
,
39
(
5
), pp.
992
998
.10.1177/0363546510391462
10.
Wei
,
F.
,
Villwock
,
M. R.
,
Meyer
,
E. G.
,
Powell
,
J. W.
, and
Haut
,
R. C.
,
2010
, “
A Biomechanical Investigation of Ankle Injury Under Excessive External Foot Rotation in the Human Cadaver
,”
J. Biomech. Eng.
,
132
(
9
), p.
091001
.10.1115/1.4002025
11.
Wei
,
F.
,
Hunley
,
S. C.
,
Powell
,
J. W.
, and
Haut
,
R. C.
,
2011
, “
Development and Validation of a Computational Model to Study the Effect of Foot Constraint on Ankle Injury Due to External Rotation
,”
Ann. Biomed. Eng.
,
39
(
2
), pp.
756
765
.10.1007/s10439-010-0234-9
12.
Villwock
,
M. R.
,
Meyer
,
E. G.
,
Powell
,
J. W.
, and
Haut
,
R. C.
,
2009
, “
Development and Evaluation of a Surrogate Ankle for Use With a Rotational Traction Measurement Apparatus
,”
Proc. Inst. Mech. Eng., Part P: J. Sports Eng. Technol.
,
223
(
4
), pp.
151
157
.10.1243/17543371JSET45
13.
Wei
,
F.
,
Post
,
J. M.
,
Braman
,
J. E.
,
Meyer
,
E. G.
,
Powell
,
J. W.
, and
Haut
,
R. C.
,
2012
, “
Eversion During External Rotation of the Human Cadaver Foot Produces High Ankle Sprains
,”
J. Orthop. Res.
,
30
(
9
), pp.
1423
1429
.10.1002/jor.22085
14.
Soutas-Little
,
R. W.
,
Beavis
,
G. C.
,
Verstraete
,
M. C.
, and
Markus
,
T. L.
,
1987
, “
Analysis of Foot Motion During Running Using a Joint-Coordinate System
,”
Med. Sci. Sports and Exercise
,
19
(
3
), pp.
285
293
.10.1249/00005768-198706000-00016
15.
Netter
,
F. H.
,
2003
,
Atlas of Human Anatomy
,
Icon Learning Systems
,
Teterboro, NJ
.
16.
Iaquinto
,
J. M.
, and
Wayne
,
J. S.
,
2010
, “
Computational Model of the Lower Leg and Foot/Ankle Complex: Application to Arch Stability
,”
J. Biomech. Eng.
,
132
(
2
), p.
021009
.10.1115/1.4000939
17.
Beumer
,
A.
,
van Hemert
,
W. L. W.
,
Swierstra
,
B. A.
,
Jasper
,
L. E.
, and
Belkoff
,
S. M.
,
2003
, “
A Biomechanical Evaluation of the Tibiofibular and Tibiotalar Ligaments of the Ankle
,”
Foot & Ankle Int.
,
24
(
5
), pp.
426
427
.10.1177/107110070302400509
18.
Attarian
,
D. E.
,
McCrackin
,
H. J.
,
Devito
,
D. P.
,
McElhaney
,
J. H.
, and
Garrett
,
W. E.
,
1985
, “
A Biomechanical Study of Human Lateral Ankle Ligaments and Autogenous Reconstructive Grafts
,”
Am. J. Sports Med.
,
13
(
6
), pp.
377
381
.10.1177/036354658501300602
19.
Yahia
,
L.
,
Brunet
,
J.
,
Labelle
,
S.
, and
Rivard
,
C. H.
,
1990
, “
A Scanning Electron Microscopic Study of Rabbit Ligaments Under Strain
,”
Matrix
,
10
(
1
), pp.
58
64
.10.1016/S0934-8832(11)80138-1
20.
Funk
,
J. R.
,
Hall
,
G. W.
,
Crandall
,
J. R.
, and
Pilkey
,
W. D.
,
2000
, “
Linear and Quasi-Linear Viscoelastic Characterization of Ankle Ligaments
,”
J. Biomech. Eng.
,
122
(
1
), pp.
15
22
.10.1115/1.429623
21.
Edwards
,
G. S.
, and
Delee
,
J. C.
,
1984
, “
Ankle Diastasis Without Fracture
,”
Foot & Ankle
,
4
(
6
) pp.
305
312
.10.1177/107110078400400606
22.
France
,
E. P.
,
Paulos
,
L. E.
,
Abbott
,
P. J.
,
Roberts
,
P. F.
,
Muhic
,
L. A.
,
Lemaster
,
J. H.
, and
Kazarian
,
L. E.
,
1987
, “
Failure Characteristics of the Medial Collateral Ligament of the Knee
,”
Aviation, Space, and Environmental Medicine
,
58
(
5
), p.
488
.
23.
Ng
,
B. H.
,
Chou
,
S. M.
,
Lim
,
B. H.
, and
Chong
,
A.
,
2004
, “
Strain Rate Effect on the Failure Properties of Tendons
,”
Proc. Inst. Mech. Eng., Part H: J. Eng. Med.
,
218
(
3
), pp.
203
206
.10.1243/095441104323118923
24.
Safran
,
M. R.
,
Benedetti
,
R. S.
,
Bartolozzi
,
A. R.
, and
Mandelbaum
,
B. R.
,
1999
, “
Lateral Ankle Sprains: a Comprehensive Review—Part 1: Etiology, Pathoanatomy, Histopathogenesis, and Diagnosis
,”
Med. Sci. Sports and Exercise
,
31
(
7
), pp.
429
437
.10.1097/00005768-199907001-00004
25.
Vitale
,
T. D.
, and
Fallat
,
L. M.
,
1988
, “
Lateral Ankle Sprains: Evaluation and Treatment
,”
J. Foot Surg.
,
27
(
3
), pp.
248
258
.
26.
Mok
,
K.-M.
,
Fong
,
D. T.-P.
,
Krosshaug
,
T.
,
Engebretsen
,
L.
,
Hung
,
A. S.-L.
,
Yung
,
P. S.-H.
, and
Chan
,
K.-M.
,
2011
, “
Kinematics Analysis of Ankle Inversion Ligamentous Sprain Injuries in Sports 2 Cases During the 2008 Beijing Olympics
,”
Am. J. Sports Med.
,
39
(
7
), pp.
1548
1552
.10.1177/0363546511399384
You do not currently have access to this content.