The mechanism of noncontact anterior cruciate ligament (ACL) injury is not well understood. It is partly because previous studies have been unable to relate dynamic knee muscle forces during sports activities such as landing from a jump to the strain in the ACL. We present a combined in vivo/in vitro method to relate the muscle group forces to ACL strain during jump-landing using a newly developed dynamic knee simulator. A dynamic knee simulator system was designed and developed to study the sagittal plane biomechanics of the knee. The simulator is computer controlled and uses six powerful electromechanical actuators to move a cadaver knee in the sagittal plane and to apply dynamic muscle forces at the insertion sites of the quadriceps, hamstring, and gastrocnemius muscle groups and the net moment at the hip joint. In order to demonstrate the capability of the simulator to simulate dynamic sports activities on cadaver knees, motion capture of a live subject landing from a jump on a force plate was performed. The kinematics and ground reaction force data obtained from the motion capture were input into a computer based musculoskeletal lower extremity model. From the model, the force-time profile of each muscle group across the knee during the movement was extracted, along with the motion profiles of the hip and ankle joints. This data was then programmed into the dynamic knee simulator system. Jump-landing was simulated on a cadaver knee successfully. Resulting strain in the ACL was measured using a differential variable reluctance transducer (DVRT). Our results show that the simulator has the capability to accurately simulate the dynamic sagittal plane motion and the dynamic muscle forces during jump-landing. The simulator has high repeatability. The ACL strain values agreed with the values reported in the literature. This combined in vivo/in vitro approach using this dynamic knee simulator system can be effectively used to study the relationship between sagittal plane muscle forces and ACL strain during dynamic activities.

References

References
1.
Griffin
,
L. Y.
,
Albohm
,
M. J.
,
Arendt
,
E. A.
,
Bahr
,
R.
,
Beynnon
,
B. D.
,
Demaio
,
M.
,
Dick
,
R. W.
,
Engebretsen
,
L.
,
Garrett
,
W. E.
, Jr.
,
Hannafin
,
J. A.
,
Hewett
,
T. E.
,
Huston
,
L. J.
,
Ireland
,
M. L.
,
Johnson
,
R. J.
,
Lephart
,
S.
,
Mandelbaum
,
B. R.
,
Mann
,
B. J.
,
Marks
,
P. H.
,
Marshall
,
S. W.
,
Myklebust
,
G.
,
Noyes
,
F. R.
,
Powers
,
C.
,
Shields
,
C.
, Jr.
,
Shultz
,
S. J.
,
Silvers
,
H.
,
Slauterbeck
,
J.
,
Taylor
,
D. C.
,
Teitz
,
C. C.
,
Wojtys
,
E. M.
, and
Yu
,
B.
,
2006
, “
Understanding and Preventing Noncontact Anterior Cruciate Ligament Injuries: A Review of the Hunt Valley II Meeting, January 2005
,”
Am. J. Sports Med.
,
34
(
9
), pp.
1512
1532
.10.1177/0363546506286866
2.
Hewett
,
T. E.
,
Myer
,
G. D.
, and
Ford
,
K. R.
,
2006
, “
Anterior Cruciate Ligament Injuries. Part I: Mechanisms and Risk Factors
,”
Am. J. Sports Med.
,
34
(
2
), pp.
299
311
.10.1177/0363546505284183
3.
Hewett
,
T. E.
,
Lindenfield
,
T. N.
,
Riccobene
,
J. V.
, and
Noyes
,
F. R.
,
1999
, “
The Effect of Neuromuscular Training on the Incidence of Knee Injury in Female Athletes: A Prospective Study
,”
Am. J. Sports Med.
,
27
(
6
), pp.
699
706
.
4.
Freedman
,
K. B.
,
Glasgow
,
M. T.
,
Glasgow
,
S. G.
, and
Bernstein
J.
,
1998
, “
Anterior Cruciate Ligament Injuries and Reconstruction Among University Students
,”
Clin. Orthop. Relat. Res.
,
356
, pp.
208
212
.10.1097/00003086-199811000-00028
5.
Deacon
,
A.
,
Bennell
,
K.
,
Kiss
,
Z. S.
,
Crossley
,
K.
, and
Brukner
,
P.
,
1997
, “
Osteoarthritis of the Knee in Retired, Elite Australian Rules Footballers
,”
Med. J. Aust.
,
166
(
4
), pp.
187
190
.
6.
Bahr
,
R.
, and
Krosshaug
,
T.
,
2005
, “
Understanding Injury Mechanisms: A Key Component of Preventing Injuries in Sport
,”
Br. J. Sports Med.
,
39
(
6
), pp.
324
329
.10.1136/bjsm.2005.018341
7.
Kirkendall
,
D. T.
, and
Garrett
,
W. E.
, Jr
.,
2000
, “
The Anterior Cruciate Ligament Enigma. Injury Mechanisms and Prevention
,”
Clin. Orthop. Relat. Res.
,
372
, pp.
64
68
.10.1097/00003086-200003000-00008
8.
Hewett
,
T. E.
,
Myer
,
G. D.
,
Ford
,
K. R.
, and
Slauterbeck
,
J. R.
,
2007
, “
Dynamic Neuromuscular Analysis Training for Preventing Anterior Cruciate Ligament Injury in Female Athletes
,”
Instr. Course Lect.
,
56
, pp.
397
406
.
9.
Aune
,
A. K.
,
Cawley
,
P. W.
, and
Ekeland
,
A.
,
1997
, “
Quadriceps Muscle Contraction Protects the Anterior Cruciate Ligament During Anterior Tibial Translation
,”
Am. J. Sports Med.
,
25
(
2
), pp.
187
190
.10.1177/036354659702500208
10.
DeMorat
,
G.
,
Weinhold
,
P.
,
Blackburn
,
T.
,
Chudik
,
S.
, and
Garrett
,
W.
,
2004
, “
Aggressive Quadriceps Loading Can Induce Noncontact Anterior Cruciate Ligament Injury
,”
Am. J. Sports Med.
,
32
(
2
), pp.
477
483
.10.1177/0363546503258928
11.
Shultz
,
S. J.
,
Schmitz
,
R. J.
,
Nguyen
,
A. D.
,
Chaudhari
,
A. M.
,
Padua
,
D. A.
,
McLean
,
S. G.
, and
Sigward
,
S. M.
,
2010
, “
ACL Research Retreat V: An Update on ACL Injury Risk and Prevention, March 25-27, 2010, Greensboro, NC.
,”
J. Athl. Train.
,
45
(
5
), pp.
499
508
.10.4085/1062-6050-45.5.499
12.
Myers
,
C. A.
,
Torry
,
M. R.
,
Shelburne
,
K. B.
,
Giphart
,
J. E.
,
LaPrade
,
R. F.
,
Woo
,
S. L.
, and
Steadman
,
J. R.
,
2012
, “
In Vivo Tibiofemoral Kinematics During 4 Functional Tasks Of Increasing Demand Using Biplane Fluoroscopy
,”
Am. J. Sports Med.
,
40
(
1
), pp.
170
178
.10.1177/0363546511423746
13.
Torry
,
M. R.
,
Shelburne
,
K. B.
,
Peterson
,
D. S.
,
Giphart
,
J. E.
,
Krong
,
J. P.
,
Myers
,
C.
,
Steadman
,
J. R.
, and
Woo
,
S. L.
,
2011
, “
Knee Kinematic Profiles During Drop Landings: A Biplane Fluoroscopy Study
,”
Med. Sci. Sports Exercise
,
43
(
3
), pp.
533
541
.10.1249/MSS.0b013e3181f1e491
14.
Taylor
,
K. A.
,
Terry
,
M. E.
,
Utturkar
,
G. M.
,
Spritzer
,
C. E.
,
Queen
,
R. M.
,
Irribarra
,
L. A.
,
Garrett
,
W. E.
, and
DeFrate
,
L. E.
,
2011
, “
Measurement of In Vivo Anterior Cruciate Ligament Strain During Dynamic Jump Landing
,”
J. Biomech.
,
44
(
3
), pp.
365
371
.10.1016/j.jbiomech.2010.10.028
15.
Beynnon
,
B.
,
Howe
,
J. G.
,
Pope
,
M. H.
,
Johnson
,
R. J.
, and
Fleming
,
B. C.
,
1992
, “
The Measurement of Anterior Cruciate Ligament Strain In Vivo
,”
Int. Orthop.
,
16
(
1
), pp.
1
12
.10.1007/BF00182976
16.
Cerulli
,
G.
,
Benoit
,
D. L.
,
Lamontagne
,
M.
,
Caraffa
,
A.
, and
Liti
,
A.
,
2003
, “
In Vivo Anterior Cruciate Ligament Strain Behaviour During a Rapid Deceleration Movement: Case Report
,”
Knee Surg. Sports Traumatol. Arthrosc.
,
11
(
5
), pp.
307
311
.10.1007/s00167-003-0403-6
17.
Fleming
,
B. C.
,
Beynnon
,
B. D.
,
Renstrom
,
P. A.
,
Johnson
,
R. J.
,
Nichols
,
C. E.
,
Peura
,
G. D.
, and
Uh
,
B. S.
,
1999
, “
The Strain Behavior of the Anterior Cruciate Ligament During Stair Climbing: An In Vivo Study
,”
Arthroscopy: J. Relat. Surg.
,
15
(
2
), pp.
185
191
.10.1053/ar.1999.v15.015018
18.
Zhang
,
Y.
,
Liu
,
G.
, and
Xie
,
S. Q.
,
2011
, “
Biomechanical Simulation of Anterior Cruciate Ligament Strain for Sports Injury Prevention
,”
Comput. Biol. Med.
,
41
(
3
), pp.
159
163
.10.1016/j.compbiomed.2011.01.006
19.
Laughlin
,
W. A.
,
Weinhandl
,
J. T.
,
Kernozek
,
T. W.
,
Cobb
,
S. C.
,
Keenan
,
K. G.
, and
O'Connor
,
K. M.
,
2011
, “
The Effects of Single-Leg Landing Technique on ACL Loading
,”
J. Biomech.
,
44
(
10
), pp.
1845
1851
.10.1016/j.jbiomech.2011.04.010
20.
Pflum
,
M. A.
,
Shelburne
,
K. B.
,
Torry
,
M. R.
,
Decker
,
M. J.
, and
Pandy
,
M. G.
,
2004
, “
Model Prediction of Anterior Cruciate Ligament Force During Drop-Landings
,”
Med. Sci. Sports Exercise
,
36
(
11
), pp.
1949
1958
.10.1249/01.MSS.0000145467.79916.46
21.
Draganich
,
L. F.
, and
Vahey
,
J. W.
,
1990
, “
An In Vitro Study of Anterior Cruciate Ligament Strain Induced by Quadriceps and Hamstrings Forces
,”
J. Orthop. Res.
,
8
(
1
), pp.
57
63
.10.1002/jor.1100080107
22.
Markolf
,
K. L.
,
O'Neill
,
G.
,
Jackson
,
S. R.
, and
McAllister
,
D. R.
,
2004
, “
Effects Of Applied Quadriceps and Hamstrings Muscle Loads on Forces in the Anterior and Posterior Cruciate Ligaments
,”
Am. J. Sports Med.
,
32
(
5
), pp.
1144
1149
.10.1177/0363546503262198
23.
Dürselen
,
L.
,
Claes
,
L.
, and
Kiefer
,
H.
,
1995
, “
The Influence of Muscle Forces and External Loads on Cruciate Ligament Strain
,”
Am. J. Sports Med.
,
23
(
1
), pp.
129
136
.10.1177/036354659502300122
24.
Torzilli
,
P. A.
,
Deng
,
X.
, and
Warren
,
R. F.
,
1994
, “
The Effect of Joint-Compressive Load and Quadriceps Muscle Force on Knee Motion in the Intact and Anterior Cruciate Ligament-Sectioned Knee
,”
Am. J. Sports Med.
,
22
(
1
), pp.
105
112
.10.1177/036354659402200117
25.
Wascher
,
D. C.
,
Markolf
,
K. L.
,
Shapiro
,
M. S.
, and
Finerman
,
G. A.
,
1993
, “
Direct In Vitro Measurement of Forces in the Cruciate Ligaments. Part I: The Effect of Multiplane Loading in the Intact Knee
J. Bone Jt. Surg., Am. Vol.
,
75
(
3
), pp.
377
386
.
26.
McLean
,
C. A.
, and
Ahmed
,
A. M.
,
1993
, “
Design and Development of an Unconstrained Dynamic Knee Simulator
,”
J. Biomech. Eng.
,
115
(
2
), pp.
144
148
.10.1115/1.2894114
27.
Maletsky
,
L. P.
, and
Hillberry
,
B. M.
,
2005
, “
Simulating Dynamic Activities Using a Five-Axis Knee Simulator
,”
J. Biomech. Eng.
,
127
(
1
), pp.
123
133
.10.1115/1.1846070
28.
Elias
,
J. J.
,
Faust
,
A. F.
,
Chu
,
Y. H.
,
Chao
,
E. Y.
, and
Cosgarea
,
A. J.
,
2003
, “
The Soleus Muscle Acts as an Agonist for the Anterior Cruciate Ligament. An In Vitro Experimental Study
,”
Am. J. Sports Med.
,
31
(
2
), pp.
241
246
.
29.
Berns
,
G. S.
,
Hull
,
M. L.
, and
Patterson
,
H. A.
,
1992
, “
Strain in the Anteromedial Bundle of the Anterior Cruciate Ligament Under Combination Loading
,”
J. Orthop. Res.
,
10
(
2
), pp.
167
176
.10.1002/jor.1100100203
30.
MacWilliams
,
B. A.
,
Wilson
,
D. R.
,
DesJardins
,
J. D.
,
Romero
,
J.
, and
Chao
,
E. Y.
,
1999
, “
Hamstrings Cocontraction Reduces Internal Rotation, Anterior Translation, and Anterior Cruciate Ligament Load in Weight-Bearing Flexion
,”
J. Orthop. Res.
,
17
(
6
), pp.
817
822
.10.1002/jor.1100170605
31.
Yoo
,
J. D.
,
Papannagari
,
R.
,
Park
,
S. E.
,
DeFrate
,
L. E.
,
Gill
,
T. J.
, and
Li
,
G.
,
2005
, “
The Effect of Anterior Cruciate Ligament Reconstruction on Knee Joint Kinematics Under Simulated Muscle Loads
,”
Am. J. Sports Med.
,
33
(
2
), pp.
240
246
.10.1177/0363546504267806
32.
Singerman
,
R.
,
Berilla
,
J.
,
Archdeacon
,
M.
, and
Peyser
,
A.
,
1999
, “
In Vitro Forces in the Normal and Cruciate-Deficient Knee During Simulated Squatting Motion
,”
J. Biomech. Eng.
,
121
(
2
), pp.
234
242
.10.1115/1.2835109
33.
Kanamori
,
A.
,
Woo
,
S. L.
,
Ma
,
C. B.
,
Zeminski
,
J.
,
Rudy
,
T. W.
,
Li
,
G.
, and
Livesay
,
G. A.
,
2000
, “
The Forces in the Anterior Cruciate Ligament and Knee Kinematics During a Simulated Pivot Shift Test: A Human Cadaveric Study Using Robotic Technology
,”
Arthroscopy: J. Relat. Surg.
,
16
(
6
), pp.
633
639
.10.1053/jars.2000.7682
34.
Li
,
G.
,
Rudy
,
T. W.
,
Sakane
,
M.
,
Kanamori
,
A.
,
Ma
,
C. B.
, and
Woo
,
S. L.
,
1999
, “
The Importance of Quadriceps and Hamstring Muscle Loading on Knee Kinematics and In-Situ Forces in the ACL
,”
J. Biomech.
,
32
(
4
), pp.
395
400
.10.1016/S0021-9290(98)00181-X
35.
Withrow
,
T. J.
,
Huston
,
L. J.
,
Wojtys
,
E. M.
, and
Ashton-Miller
,
J. A.
,
2006
, “
The Effect of an Impulsive Knee Valgus Moment on In Vitro Relative ACL Strain During a Simulated Jump Landing
,”
Clin. Biomech. (Bristol, Avon)
,
21
(
9
), pp.
977
983
.10.1016/j.clinbiomech.2006.05.001
36.
Hashemi
,
J.
,
Chandrashekar
,
N.
,
Jang
,
T.
,
Karpat
,
F.
,
Oseto
,
M.
, and
Ekwaro-Osire
,
S.
,
2007
, “
An Alternative Mechanism of Non-Contact Anterior Cruciate Ligament Injury During Jump-landing
,”
Exp. Mech.
,
47
, pp.
347
354
,10.1007/s11340-007-9043-y
37.
Heijne
,
A.
,
Fleming
,
B. C.
,
Renstrom
,
P. A.
,
Peura
,
G. D.
,
Beynnon
,
B. D.
, and
Werner
,
S.
,
2004
, “
Strain on the Anterior Cruciate Ligament During Closed Kinetic Chain Exercises
,”
Med. Sci. Sports Exercise
,
36
(
6
), pp.
935
941
.10.1249/01.MSS.0000128185.55587.A3
38.
Erdemir
,
A.
,
McLean
,
S.
,
Herzog
,
W.
, and
van den Bogert
,
A. J.
,
2007
, “
Model-Based Estimation of Muscle Forces Exerted During Movements
,”
Clin. Biomech. (Bristol, Avon)
,
22
(
2
), pp.
131
154
.10.1016/j.clinbiomech.2006.09.005
39.
Damsgaard
,
M.
,
Rasmussen
,
J.
,
Christensen
,
S. T.
,
Surma
,
E.
, and
de Zee
,
M.
,
2006
, “
Analysis of Musculoskeletal Systems in the Anybody Modeling System
,”
Simul. Model. Pract. Theory
,
14
, pp.
1100
1111
.10.1016/j.simpat.2006.09.001
40.
Klein-Horsman
,
M. D.
,
2007
, “
The Twente Lower Extremity Model—Consistent Dynamic Simulation of the Human Locomotor Apparatus
,” Ph.D. thesis, Universiteit Twente, Enschede, The Netherlands.
41.
Delp
,
S. L.
,
Ringwelski
,
D. A.
, and
Carroll
,
N. C.
,
1994
, “
Transfer of the Rectus Femoris: Effects of Transfer Site on Moment Arms About the Knee And Hip
,”
J. Biomech.
,
27
(
10
), pp.
1201
1211
.10.1016/0021-9290(94)90274-7
42.
Weinhold
,
P. S.
,
Stewart
,
J. D.
,
Liu
,
H. Y.
,
Lin
,
C. F.
,
Garrett
,
W. E.
, and
Yu
,
B.
,
2007
, “
The Influence of Gender-Specific Loading Patterns of the Stop-Jump Task on Anterior Cruciate Ligament Strain
,”
Injury
,
38
(
8
), pp.
973
978
.10.1016/j.injury.2006.12.024
43.
Hashemi
,
J.
,
Breighner
,
R.
,
Jang
,
T. H.
,
Chandrashekar
,
N.
,
Ekwaro-Osire
,
S.
, and
Slauterbeck
,
J. R.
,
2010
, “
Increasing Pre-Activation of the Quadriceps Muscle Protects the Anterior Cruciate Ligament During the Landing Phase of a Jump: An In Vitro Simulation
,”
Knee
,
17
(
3
), pp.
235
241
.10.1016/j.knee.2009.09.010
44.
Shin
,
C. S.
,
Chaudhari
,
A. M.
, and
Andriacchi
,
T. P.
,
2007
, “
The Influence of Deceleration Forces on ACL Strain During Single-Leg Landing: A Simulation Study
,”
J. Biomech.
,
40
(
5
), pp.
1145
1152
.10.1016/j.jbiomech.2006.05.004
45.
Shimokochi
,
Y.
,
Ambegaonkar
,
J. P.
,
Meyer
,
E. G.
,
Lee
,
S. Y.
, and
Shultz
,
S. J.
,
2012
, “
Changing Sagittal Plane Body Position During Single-Leg Landings Influences the Risk of Non-Contact Anterior Cruciate Ligament Injury
,”
Knee Surg. Sports Traumatol. Arthrosc.
(in press).
46.
McLean
,
S. G.
,
Oh
,
Y. K.
,
Palmer
,
M. L.
,
Lucey
,
S. M.
,
Lucarelli
,
D. G.
,
Ashton-Miller
,
J. A.
, and
Wojtys
,
E. M.
,
2011
, “
The Relationship Between Anterior Tibial Acceleration, Tibial Slope, and ACL Strain During a Simulated Jump Landing Task
,”
J. Bone Jt. Surg., Am.
,
93
(
14
), pp.
1310
1317
.10.2106/JBJS.J.00259
You do not currently have access to this content.