The role of the recruitment-derecruitment of small structures in the lung (lung units) as the lung increases and decreases in volume has been debated. The objective of this study was to develop a model to estimate the change in the number and volume of open lung units as an excised lung is inflated-deflated between minimum and maximum lung volume. The model was formulated based on the observation that the compliance of the slowly changing quasi-static pressure-volume (P-V) curve of an excised rat lung can differ from the compliance of a faster changing small sinusoidal pressure volume perturbations superimposed on the curve. In those regions of the curve where differences in compliance occur, the lung tissue properties exhibit nonlinear characteristics, which cannot be linearized using “incremental” or “small signal” analysis. The model attributes the differences between the perturbation and quasi-static compliance to an additional nonlinear compliance term that results from the sequential opening and closing of lung units. Using this approach, it was possible to calculate the normalized average volume and the normalized number of open units as the lung is slowly inflated-deflated. Results indicate that the normalized average volume and the normalized number of open units are not linearly related to normalized lung volume, and at equal lung volumes the normalized number of open units is greater and the normalized average lung unit volume is smaller during lung deflation when compared to lung inflation. In summary, a model was developed to describe the recruitment-derecruitment process in excised lungs based on the differences between small signal perturbation compliance and quasi-static compliance. Values of normalized lung unit volume and the normalized number of open lung units were shown to be nonlinear functions of both transpulmonary pressure and normalized lung volume.

References

References
1.
Bates
,
J. H.
, and
Irvin
,
C. G.
,
2002
, “
Time Dependence of Recruitment and Derecruitment in the Lung: A Theoretical Model
,”
J. Appl. Physiol.
,
93
, pp.
705
713
.10.1152/japplphysiol.01274.2001
2.
Cheng
,
W.
,
DeLong
,
D. S.
,
Franz
,
G. N.
,
Petsonk
,
E. L.
, and
Frazer
,
D. G.
,
1995
, “
Contribution of Opening and Closing of Lung Units to Lung Hysteresis
,”
Respir. Physiol.
,
102
, pp.
205
215
.10.1016/0034-5687(95)00055-0
3.
Cheng
,
W.
,
DeLong
,
D. S.
,
Franz
,
G. N.
,
Petsonk
,
E. L.
, and
Frazer
,
D. G.
,
1999
, “
Relationship Between Discontinuous Lung Sounds and Hysteresis in Control and Tween-20-Rinsed, Excised Rat Lungs
,”
Respir. Physiol.
,
117
, pp.
131
140
.10.1016/S0034-5687(99)00048-1
4.
Frazer
,
D. G.
,
Weber
,
K. C.
, and
Franz
,
G. N.
,
1985
, “
Evidence of Sequential Opening and Closing of Lung Units During Inflation/Deflation of Excised Rat Lungs
,”
Respir. Physiol.
,
61
, pp.
277
288
.10.1016/0034-5687(85)90071-4
5.
Frazer
,
D. G.
,
Lindsley
,
W. G.
,
Rosenberry
,
K.
,
McKinney
,
W.
,
Goldsmith
,
W. T.
,
Reynolds
,
J. S.
,
Tomblyn
,
S.
, and
Afshari
,
A.
,
2004
, “
Model Predictions of the Recruitment of Lung Units and the Lung Surface Area-Volume Relationship During Inflation
,”
Ann. Biomed. Eng.
,
32
(
5
), pp.
756
763
.10.1023/B:ABME.0000030240.83381.63
6.
Brancazio
,
L.
,
Franz
,
G. N.
,
Petsonk
,
E. L.
, and
Frazer
,
D. G.
,
2001
, “
Lung Area-Volume Models in Relation to the Recruitment/De-Recruitment of Individual Lung Units
,”
Ann. Biomed. Eng.
,
29
, pp.
252
262
.10.1114/1.1352639
7.
Suki
,
B.
,
Barabsi
,
A. L.
,
Hantos
,
A.
,
Petak
,
F.
, and
Stanley
,
H. E.
,
1994
, “
Avalanches and Power-Law Behavior in Lung Inflation
,”
Nature
,
368
, pp.
615
618
.10.1038/368615a0
8.
Suki
,
B.
,
Andrade
,
J.
, Jr.
,
Coughlin
,
M. F.
,
Stamenovich
,
D.
,
Stanley
,
H. E.
,
Sujeer
,
M.
, and
Zapperi
,
S.
,
1998
, “
Mathematical Modeling of the First Inflation of Degassed Lungs
,”
Ann. Biomed. Eng.
,
26
, pp.
608
617
.10.1114/1.126
9.
Majumdar
,
A.
,
Alencal
,
A. A.
,
Buldyrev
,
S. V.
,
Hantos
,
A.
,
Stanley
,
H. E.
, and
Suki
,
B.
,
2003
, “
Fluid Transport in Branched Structures With Temporary Closures: A Model of Quasistatic Lung Inflation
,”
Phys. Rev. E
,
67
, p.
031912
.10.1103/PhysRevE.67.031912
10.
Namati
,
E.
,
Thiesse
,
J.
,
de Ryk
,
J.
, and
McLennan
,
F.
,
2008
, “
Alveolar Dynamics During Respiration. Are Pores of Kohn a Pathway to Recruitment
,”
Am. J. Respir. Cell. Mol. Biol.
,
38
, pp.
572
578
.10.1165/rcmb.2007-0120OC
11.
Frazer
,
D. G.
,
Stengel
,
P. W.
, and
Weber
,
K. C.
,
1979
, “
Meniscus Formation in Airways of Excised Rat Lungs
,”
Respir. Physiol.
,
36
, pp.
121
129
.10.1016/0034-5687(79)90019-7
12.
Frazer
,
D. G.
, and
Weber
,
K. C.
,
1979
, “
Trapped Gas at Maximum Lung Volume in Intact Isolated Rat Lungs
,”
Respir. Physiol.
,
37
, pp.
173
184
.10.1016/0034-5687(79)90069-0
13.
Alencar
,
A. M.
,
Hantos
,
Z.
,
Petak
,
F.
,
Tolnai
,
J.
,
Asztalos
,
T.
,
Zapperi
,
S.
,
Andrade
,
J. S.
,
Buldyrev
,
S. V.
,
Stanley
,
H. E.
, and
Suki
,
B.
,
1999
, “
Scaling Behavior in Crackle Sound During Lung Inflation
,”
Phys. Rev. E
,
60
, pp.
4659
4663
.10.1103/PhysRevE.60.4659
14.
Fredberg
,
J. J.
, and
Stamenovic
,
D.
,
1989
, “
On the Imperfect Elasticity of Lung Tissue
,”
J. Appl. Physiol.
,
67
(
6
), pp.
2408
2419
.
15.
Hantos
,
Z.
,
Daroczy
,
B.
,
Suki
,
B.
,
Nagy
,
S.
, and
Fredberg
,
J. J.
,
1992
, “
Input Impedance and Peripheral Inhomogeneity of Dog Lungs
,”
J. Appl. Physiol.
,
72
, pp.
168
178
.10.1063/1.352153
16.
Bachofen
,
H.
, and
Hildebrandt
,
J.
,
1971
, “
Area Analysis of Pressure-Volume Hysteresis in Mammalian Lungs
,”
J. Appl. Physiol.
,
30
, pp.
439
497
.
17.
Hildebrandt
,
J.
,
1969
, “
Dynamic Properties of Air-Filled Excised Cat Lung Determined by Liquid Plethsymograph
,”
J. Appl. Physiol.
,
27
(
2
), pp.
246
250
.
18.
Hildebrandt
,
J.
,
1969
, “
Comparison of Mathematical Models for Cat Lung and Viscoelastic Balloon Derived by Laplace Transform Methods From Pressure-Volume Data
,”
Bull. Math. Biophys.
,
31
, pp.
651
667
.10.1007/BF02477779
19.
Frazer
,
D. G.
, and
Franz
,
G. N.
,
1981
, “
Trapped Gas and Lung Hysteresis
,”
Respir. Physiol.
,
46
, pp.
237
246
.10.1016/0034-5687(81)90124-9
20.
Stengel
,
P. W.
,
Frazer
,
D. G.
, and
Weber
,
K. C.
,
1980
, “
Lung Degassing: An Evaluation of Two Methods
,”
J. Appl. Physiol.
,
48
, pp.
370
375
.
21.
Weibel
,
E. R.
,
1963
,
Morphometry of the Human Lung
,
Academic Press Inc.
,
New York
, pp.
36
37
.
22.
Weibel
,
E. R.
, and
Gomes
,
D. M.
,
1962
, “
A principle for Counting Tissue Structures on Random Sections
,”
J. Appl. Physiol.
,
17
, pp.
343
348
.
23.
Smaldone
,
G. C.
,
Mitzner
,
W.
, and
Itoh
,
H.
,
1983
, “
Role of Alveolar Recruitment in Lung Inflation: Influence on Pressure-Volume Hysteresis
,”
J. Appl. Physiol.
,
55
, pp.
1321
1332
.
24.
Lum
,
H.
,
Huang
,
I.
, and
Mitzner
,
W.
,
1990
, “
Morphological Evidence of Alveolar Recruitment During Inflation at High Transpulmonary Pressure
,”
J. Appl. Physiol.
,
68
, pp.
2282
2286
.
25.
Lai-Fook
,
S. J.
,
Hyatt
,
R. E.
, and
Rodarte
,
J. R.
,
1978
, “
Effect of Parenchymal Shear Modulus and Lung Volume on Bronchial Pressure-Diameter Behavior
,”
J. Appl. Physiol.
,
44
(
6
), pp.
859
868
.
26.
Lambert
,
R. K.
,
Wilson
,
T. A.
,
Hyatt
,
R. E.
, and
Rodarte
,
J. R.
,
1982
, “
A Computational Model for Expiratory Flow
,”
J. Appl. Physiol.
,
52
(
1
), pp.
44
56
.
27.
Gaver
,
D. P.
, III
.,
Samsel
,
R. W.
, and
Solway
,
J.
,
1990
, “
Effects of Surface Tension and Viscosity on Airway Opening
,”
J. Appl. Physiol.
,
69
, pp.
74
85
.
28.
Yap
,
D. Y.
,
Liebkeman
,
W. D.
,
Solway
,
J.
, and
Gaver
,
D. P.
, III.
,
1994
, “
Influences of Parenchymal Tethering on the Reopening of Closed Pulmonary Airways
,”
J. Appl. Phsyiol.
,
76
, pp.
2095
2105
.
You do not currently have access to this content.