The study of the mechanical properties of swine carotids has clinical relevance because it is important for the appropriate design of intravascular devices in the animal trial phases. The inelastic properties of porcine carotid tissue were investigated. Experimental uniaxial cyclic tests were performed along the longitudinal and circumferential directions of vessels. The work focused on the determination, comparison, and constitutive modeling of the softening properties and residual stretch set of the swine carotid artery over long stretches and stress levels in both proximal and distal regions. It was observed that the residual strain depends on the maximum stretch in the previous load cycle. The strain was higher for distal than for proximal samples and for circumferential than for longitudinal samples. In addition, a pseudoelastic model was used to reproduce the residual stretch and softening behavior of the carotid artery. The model presented a good approximation of the experimental data. The results demonstrate that the final results in animal trial studies could be affected by the location studied along the length of the porcine carotid.

References

References
1.
Fung
,
Y. C.
,
1993
,
Biomechanics. Mechanical Properties of Living Tissues
,
Springer-Verlag
,
Berlin
.
2.
Hokanson
,
J.
, and
Yazdami
,
S.
,
1997
, “
A Constitutive Model of the Artery With Damage
,”
Mech. Res. Commun.
,
24
, pp.
151
159
.10.1016/S0093-6413(97)00007-4
3.
Balzani
,
D.
,
Schröder
,
J.
, and
Gross
,
D.
,
2006
, “
Simulation of Discontinuous Damage Incorporating Residual Stress in Circumferentially Overstretched Atherosclerotic Arteries
,”
Acta Biomater.
,
2
, pp.
609
618
.10.1016/j.actbio.2006.06.005
4.
Calvo
,
B.
,
Peña
,
E.
,
Martínez
,
M. A.
, and
Doblaré
,
M.
,
2007
, “
An Uncoupled Directional Damage Model for Fibered Biological Soft Tissues, Formulation and Computational Aspects
,”
Int. J. Numer. Methods Eng.
,
69
, pp.
2036
2057
.10.1002/nme.1825
5.
Volokh
,
K. Y.
,
2007
, “
Prediction of Arterial Failure Based on a Microstructural Bi-Layer Fiber-Matrix Model With Softening
,”
J. Biomech.
,
41
, pp.
447
453
.10.1016/j.jbiomech.2007.08.001
6.
Rodríguez
,
J. F.
,
Alastrue
,
V.
, and
Doblaré
,
M.
,
2008
, “
Finite Element Implementation of a Stochastic Three Dimensional Finite-Strain Damage Model for Fibrous Soft Tissue
,”
Comput. Methods Appl. Mech. Eng.
,
197
, pp.
946
958
.10.1016/j.cma.2007.09.017
7.
Peña
,
E.
, and
Doblare
,
M.
,
2009
, “
An Anisotropic pseudoelastic Approach for Modelling Mullins Effect in Fibrous Biological Materials
,”
Mech. Res. Commun.
,
36
, pp.
784
790
.10.1016/j.mechrescom.2009.05.006
8.
Gasser
,
T. C.
,
2011
, “
An Irreversible Constitutive Model for Fibrous Soft Biological Tissue: A 3-D Microfiber Approach With Demonstrative Application to Abdominal Aortic Aneurysms
,”
Acta Biomater.
,
7
, pp.
2457
2466
.10.1016/j.actbio.2011.02.015
9.
Maher
,
E.
,
Creane
,
A.
,
Lally
,
C.
, and
Kelly
,
D. J.
,
2012
, “
An Anisotropic Inelastic Constitutive Model to Describe Stress Softening and Permanent Deformation in Arterial Tissue
,”
J. Mech. Behav. Biomed.
, (in press).
10.
Rhodin
,
J. A. G.
,
1980
,
Architecture of the Vessel Wall, Handbook of Physiology, The Cardiovascular System
, Vol. 2,
American Physiological Society
,
Bethesda, MD
.
11.
Silver
,
F. H.
,
Snowhill
,
P. B.
, and
Foran
,
D. J.
,
2003
, “
Mechanical Behavior of Vessel Wall: A Comparative Study of Aorta, Vena Cava, and Carotid Artery
,”
Ann. Biomed. Eng.
,
31
, pp.
793
803
.10.1114/1.1581287
12.
Guo
,
X.
, and
Kassab
,
G. S.
,
2003
, “
Variation of Mechanical Properties Along the Length of the Aorta in C57bl/6 Mice
,”
Am. J. Physiol. Heart Circ. Physiol.
,
285
, pp.
H2614
H2622
.10.1152/ajpheart.00567.2003
13.
García
,
A.
,
Peña
,
E.
,
Laborda
,
A.
,
Lostalé
,
F.
,
Gregorio
,
M. A. D.
,
Doblaré
,
M.
, and
Martínez
,
M. A.
,
2011
, “
Experimental Study and Constitutive Modelling of the Passive Mechanical Properties of the Porcine Carotid Artery and its Relation to Histological Analysis. Implications in Animal Cardiovascular Device Trials
,”
Med. Eng. Phys.
,
33
, pp.
665
676
.10.1016/j.medengphy.2011.01.016
14.
Maher
,
E.
,
Early
,
M.
,
Creane
,
A.
,
Lally
,
C.
, and
Kelly
,
D. J.
,
2012
, “
Site Specific Inelasticity of Arterial Tissue
,”
J. Biomech.
,
45
, pp.
1393
1399
.10.1016/j.jbiomech.2012.02.026
15.
García
,
A.
,
Peña
,
E.
, and
Martínez
,
M. A.
,
2012
, “
Influence of Geometrical Parameters on Radial Force During Self-Expanding Stent Deployment. Application for a Variable Radial Stiffness Stent
,”
J. Mech. Behav. Biomed.
,
10
, pp.
166
175
.10.1016/j.jmbbm.2012.02.006
16.
García
,
A.
,
Peña
,
E.
, and
Martínez
,
M. A.
,
2012
, “
Viscoelastic Properties of the Passive Mechanical Behavior of the Porcine Carotid Artery: Influence of Proximal and Distal Positions
,”
Biorheology
,
49
, pp. 271–288.
17.
Holzapfel
,
G. A.
,
Gasser
,
C. T.
,
Sommer
,
G.
, and
Regitnig
,
P.
,
2005
, “
Determination of the Layer-Specific Mechanical Properties of Human Coronary Arteries With Non-Atherosclerotic Intimal Thickening, and Related Constitutive Modelling
,”
Am. J. Physiol. Heart Circ. Physiol.
,
289
, pp.
H2048
H2058
.10.1152/ajpheart.00934.2004
18.
Flory
,
P. J.
,
1961
, “
Thermodynamic Relations for High Elastic Materials
,”
Trans. Faraday Soc.
,
57
, pp.
829
838
.10.1039/tf9615700829
19.
Peña
,
E.
,
Peña
,
J. A.
, and
Doblaré
,
M.
,
2009
, “
On the Mullins Effect and Hysteresis of Fibered Biological Materials: A Comparison Between Continuous and Discontinuous Damage Models
,”
Int. J. Solids Struct.
,
46
, pp.
1727
1735
.10.1016/j.ijsolstr.2008.12.015
20.
Ogden
,
R. W.
, and
Roxburgh
,
D. G.
,
1999
, “
A Pseudo-Elastic Model for the Mullins Effect in Filled Rubber
,”
Proc. R. Soc. London A
, A
455
, pp.
2861
2878
.10.1098/rspa.1999.0431
21.
Bose
,
K.
,
Hurtado
,
J. A.
,
Snyman
,
M. F.
,
Mars
,
W. V.
, and
Chen
,
J. Q.
,
2003
, “
Modelling of Stress Softening in Filled Elastomer
,”
Constitutive Models for Rubber III
,
J. J. C.
Busfield
and
A. H.
Muhr
, eds.,
Swets & Zeitlinger
,
Switzerland
, pp.
159
167
.
22.
Holzapfel
,
G. A.
,
Gasser
,
T. C.
, and
Ogden
,
R. W.
,
2000
, “
A New Constitutive Framework for Arterial Wall Mechanics and a Comparative Study of Material Models
,”
J. Elast.
,
61
, pp.
1
48
.10.1023/A:1010835316564
23.
Marquardt
,
D. W.
,
1963
, “
An Algorithm for Least-Squares Estimation of Nonlinear Parameters
,”
SIAM J. Appl. Math.
,
11
, pp.
431
441
.10.1137/0111030
24.
Ehret
,
A. E.
, and
Itskov
,
M.
,
2009
, “
Modeling of Anisotropic Softening Phenomena: Application to Soft Biological Tissues
,”
Int. J. Plast.
,
25
, pp.
901
919
.10.1016/j.ijplas.2008.06.001
25.
Dorfmann
,
A.
, and
Ogden
,
R. W.
,
2004
, “
A Constitutive Model for the Mullins Effect With Permanent set in Particle-Reinforced Rubber
,”
Int. J. Solids Struct.
,
41
, pp.
1855
1878
.10.1016/j.ijsolstr.2003.11.014
26.
Peña
,
E.
,
2011
, “
Prediction of the Softening and Damage Effects With Permanent set in Fibrous Biological Materials
,”
J. Mech. Phys. Solids
,
59
, pp.
1808
1822
.10.1016/j.jmps.2011.05.013
27.
Peña
,
E.
,
Alastrue
,
V.
,
Laborda
,
A.
,
Martínez
,
M. A.
, and
Doblare
,
M.
,
2010
, “
A Constitutive Formulation of Vascular Tissue Mechanics Including Viscoelasticity and Softening Behaviour
,”
J. Biomech.
,
43
, pp.
984
989
.10.1016/j.jbiomech.2009.10.046
28.
Choudhury
,
N.
,
Bouchot
,
O.
,
Rouleau
,
L.
,
Tremblay
,
D.
,
Cartier
,
R.
,
Butany
,
J.
,
Mongrain
,
R.
, and
Leask
,
R. L.
,
2009
, “
Local Mechanical and Structural Properties of Healthy and Diseased Human Ascending Aorta Tissue
,”
Cardiovasc. Pathol.
,
18
, pp.
83
91
.10.1016/j.carpath.2008.01.001
29.
Sommer
,
G.
,
Regitnig
,
P.
,
Költringer
,
L.
, and
Holzapfel
,
G. A.
,
2010
, “
Biaxial Mechanical Properties of Intact and Layer-Dissected Human Carotid Arteries at Physiological and Supra-Physiological Loadings
,”
Am. J. Physiol. Heart Circ. Physiol.
,
298
, pp.
H898
H912
.10.1152/ajpheart.00378.2009
30.
Provenzano
,
P. P.
,
Heisey
,
D.
,
Hayashi
,
K.
,
Lakes
,
R.
, and
Vanderby
,
R.
,
2002
, “
Subfailure Damage in Ligament: A Structural and Cellular Evaluation
,”
J. Appl. Physiol.
,
92
, pp.
362
371
. Available at: http://jap.physiology.org/content/92/1/362.full#ref-list-1
31.
Sverdilk
,
A.
, and
Lanir
,
Y.
,
2002
, “
Time-Dependent Mechanical Behaviour of Sheep Digital Tendons, Including the Effects of Preconditionig
,”
ASME J. Biomech. Eng.
,
124
, pp.
78
83
.10.1115/1.1427699
32.
Giles
,
J. M.
,
Black
,
A. E.
, and
Bischoff
,
J. E.
,
2007
, “
Anomalous Rate Dependence of the Preconditioned Response of Soft Tissue During Load Controlled Deformation
,”
J. Biomech.
,
40
, pp.
777
785
.10.1016/j.jbiomech.2006.03.017
33.
Muñoz
,
M. J.
,
Bea
,
J. A.
,
Rodríguez
,
J. F.
,
Ochoa
,
I.
,
Grasa
,
J.
,
del Palomar
,
A. P.
,
Zaragoza
,
P.
,
Osta
,
R.
, and
Doblaré
,
M.
,
2008
, “
An Experimental Study of the Mouse Skin Behaviour: Damage and Inelastic Aspects
,”
J. Biomech.
,
41
, pp.
93
99
.10.1016/j.jbiomech.2007.07.013
34.
Calvo
,
B.
,
Peña
,
E.
,
Martins
,
P.
,
Mascarenhas
,
T.
,
Doblare
,
M.
,
Natal
,
R.
, and
Ferreira
,
A.
,
2009
, “
On Modelling Damage Process in Vaginal Tissue
,”
J. Biomech.
,
42
, pp.
642
651
.10.1016/j.jbiomech.2008.12.002
35.
Martins
,
P.
,
Peña
,
E.
,
Jorge
,
R. N.
,
Santos
,
A.
,
Santos
,
L.
,
Mascarenhas
,
T.
, and
Calvo
,
B.
,
2012
, “
Mechanical Characterization and Constitutive Modelling of the Damage Process in Rectus Sheath
,”
J. Mech. Behav. Biomed.
,
8
, pp.
111
122
.10.1016/j.jmbbm.2011.12.005
36.
Alastrué
,
V.
,
Peña
,
E.
,
Martínez
,
M. A.
, and
Doblaré
,
M.
,
2008
, “
Experimental Study and Constitutive Modelling of the Passive Mechanical Properties of the Ovine Infrarenal Vena Cava Tissue
,”
J. Biomech.
,
41
, pp.
3038
3045
.10.1016/j.jbiomech.2008.07.008
37.
Weisbecker
,
H.
,
Pierce
,
D. M.
,
Regitnig
,
P.
, and
Holzapfel
,
G. A.
,
2012
, “
Layer-Specific Damage Experiments and Modeling of Human Thoracic and Abdominal Aortas With Non-Atherosclerotic Intimal Thickening
,”
J. Mech. Behav. Biomed.
,
12
, pp.
93
106
.10.1016/j.jmbbm.2012.03.012
38.
Dobrin
,
P. B.
, and
Canfield
,
T. R.
,
1984
, “
Elastase, Collagenase, and the Biaxial Elastic Properties of Dog Carotid Artery
,”
Am. J. Physiol. Heart Circ. Physiol.
,
247
, pp.
H124
H131
.
39.
Guinea
,
G. V.
,
Atienza
,
J. M.
,
Elices
,
M.
,
Aragoncillo
,
P.
, and
Hayashi
,
K.
,
2005
, “
Thermomechanical Behavior of Human Carotid Arteries in the Passive State
,”
Am. J. Physiol. Heart Circ. Physiol.
,
288
, pp.
H2940
H2945
.10.1152/ajpheart.01099.2004
40.
Kang
,
T.
,
Resar
,
J.
, and
Humphrey
,
D. J.
,
1995
, “
Heat-Induced Changes in the Mechanical Behavior of Passive Coronary Arteries
,”
ASME J. Biomech. Eng.
,
117
, pp.
86
93
.10.1115/1.2792274
41.
Schriefl
,
A.
,
Zeindlinger
,
G.
,
Pierce
,
D.
,
Regitnig
,
P.
, and
Holzapfel
,
G.
,
2012
, “
Determination of the Layer-Specific Distributed Collagen Fiber Orientations in Human Thoracic and Abdominal Aortas and Common Iliac Arteries
,”
J. R. Soc. Interface
,
9
, pp.
1275
1286
.10.1098/rsif.2011.0727
You do not currently have access to this content.