An accurate method to locate of the flexion-extension (F-E) axis and longitudinal rotation (LR) axis of the tibiofemoral joint is required to accurately characterize tibiofemoral kinematics. A method was recently developed to locate these axes using an instrumented spatial linkage (ISL) (2012, “On the Estimate of the Two Dominant Axes of the Knee Using an Instrumented Spatial Linkage,” J. Appl. Biomech., 28(2), pp. 200–209). However, a more comprehensive error analysis is needed to optimize the design and characterize the limitations of the device before using it experimentally. To better understand the errors in the use of an ISL in finding the F-E and LR axes, our objectives were to (1) develop a method to computationally determine the orientation and position errors in locating the F-E and LR axes due to transducer nonlinearity and hysteresis, ISL size and attachment position, and the pattern of applied tibiofemoral motion, (2) determine the optimal size and attachment position of an ISL to minimize these errors, (3) determine the best pattern of pattern of applied motion to minimize these errors, and (4) examine the sensitivity of the errors to range of flexion and internal-external (I-E) rotation. A mathematical model was created that consisted of a virtual “elbow-type” ISL that measured motion across a virtual tibiofemoral joint. Two orientation and two position errors were computed for each axis by simulating the axis-finding method for 200 iterations while adding transducer errors to the revolute joints of the virtual ISL. The ISL size and position that minimized these errors were determined from 1080 different combinations. The errors in locating the axes using the optimal ISL were calculated for each of three patterns of motion applied to the tibiofemoral joint, consisting of a sequential pattern of discrete tibiofemoral positions, a random pattern of discrete tibiofemoral positions, and a sequential pattern of continuous tibiofemoral positions. Finally, errors as a function of range of flexion and I-E rotation were determined using the optimal pattern of applied motion. An ISL that was attached to the anterior aspect of the knee with 300-mm link lengths had the lowest maximum error without colliding with the anatomy of the joint. A sequential pattern of discrete tibiofemoral positions limited the largest orientation or position error without displaying large bias error. Finally, the minimum range of applied motion that ensured all errors were below 1 deg or 1 mm was 30 deg flexion with ±15 deg I-E rotation. Thus a method for comprehensive analysis of error when using this axis-finding method has been established, and was used to determine the optimal ISL and range of applied motion; this method of analysis could be used to determine the errors for any ISL size and position, any applied motion, and potentially any anatomical joint.

References

References
1.
Hollister
,
A. M.
,
Jatana
,
S.
,
Singh
,
A. K.
,
Sullivan
,
W. W.
, and
Lupichuk
,
A. G.
,
1993
, “
The Axes of Rotation of the Knee
,”
Clin. Orthop. Relat. Res.
,
290
, pp.
259
268
.10.1097/00003086-199305000-00033
2.
Eckhoff
,
D. G.
,
Bach
,
J. M.
,
Spitzer
,
V. M.
,
Reinig
,
K. D.
,
Bagur
,
M. M.
,
Baldini
,
T. H.
, and
Flannery
,
N. M.
,
2005
, “
Three-Dimensional Mechanics, Kinematics, and Morphology of the Knee Viewed in Virtual Reality
,”
J. Bone Joint Surg. Am,.
87
(
Suppl 2
), pp.
71
80
.10.2106/JBJS.E.00440
3.
Coughlin
,
K. M.
,
Incavo
,
S. J.
,
Churchill
,
D. L.
, and
Beynnon
,
B. D.
,
2003
, “
Tibial Axis and Patellar Position Relative to the Femoral Epicondylar Axis During Squatting
,”
J. Arthroplasty
,
18
(
8
), pp.
1048
1055
.10.1016/S0883-5403(03)00449-2
4.
Most
,
E.
,
Axe
,
J.
,
Rubash
,
H.
, and
Li
,
G.
,
2004
, “
Sensitivity of the Knee Joint Kinematics Calculation to Selection of Flexion Axes
,”
J. Biomech.
,
37
(
11
), pp.
1743
1748
.10.1016/j.jbiomech.2004.01.025
5.
Piazza
,
S. J.
, and
Cavanagh
,
P. R.
,
2000
, “
Measurement of the Screw-Home Motion of the Knee Is Sensitive to Errors in Axis Alignment
,”
J. Biomech.
,
33
(
8
), pp.
1029
1034
.10.1016/S0021-9290(00)00056-7
6.
Schache
,
A. G.
,
Baker
,
R.
, and
Lamoreux
,
L. W.
,
2006
, “
Defining the Knee Joint Flexion-Extension Axis for Purposes of Quantitative Gait Analysis: An Evaluation of Methods
,”
Gait and Posture
,
24
(
1
), pp.
100
109
.10.1016/j.gaitpost.2005.08.002
7.
Churchill
,
D. L.
,
Incavo
,
S. J.
,
Johnson
,
C. C.
, and
Beynnon
,
B. D.
,
1998
, “
The Transepicondylar Axis Approximates the Optimal Flexion Axis of the Knee
,”
Clin. Orthop. Relat. Res.
,
356
, pp.
111
118
.10.1097/00003086-199811000-00016
8.
Asano
,
T.
,
Akagi
,
M.
, and
Nakamura
,
T.
,
2005
, “
The Functional Flexion-Extension Axis of the Knee Corresponds to the Surgical Epicondylar Axis: in vivo Analysis Using a Biplanar Image-Matching Technique
,”
J. Arthroplasty
,
20
(
8
), pp.
1060
1067
.10.1016/j.arth.2004.08.005
9.
Katz
,
M. A.
,
Beck
,
T. D.
,
Silber
,
J. S.
,
Seldes
,
R. M.
, and
Lotke
,
P. A.
,
2001
, “
Determining Femoral Rotational Alignment in Total Knee Arthroplasty: Reliability of Techniques
,”
J. Arthroplasty
,
16
(
3
), pp.
301
305
.10.1054/arth.2001.21456
10.
Incavo
,
S. J.
,
Coughlin
,
K. M.
,
Pappas
,
C.
, and
Beynnon
,
B. D.
,
2003
, “
Anatomic Rotational Relationships of the Proximal Tibia, Distal Femur, and Patella: Implications for Rotational Alignment in Total Knee Arthroplasty
,”
J. Arthroplasty
,
18
(
5
), pp.
643
648
.10.1016/S0883-5403(03)00197-9
11.
Eckhoff
,
D.
,
Hogan
,
C.
,
Dimatteo
,
L.
,
Robinson
,
M.
, and
Bach
,
J.
,
2007
, “
Difference between the Epicondylar and Cylindrical Axis of the Knee
,”
Clin. Orthop. Relat. Res.
,
461
, pp.
238
244
.
12.
Kessler
,
O.
,
Durselen
,
L.
,
Banks
,
S.
,
Mannel
,
H.
, and
Marin
,
F.
,
2007
, “
Sagittal Curvature of Total Knee Replacements Predicts in vivo Kinematics
,”
Clin. Biomech. (Bristol, Avon)
,
22
(
1
), pp.
52
58
.10.1016/j.clinbiomech.2006.07.011
13.
Roland
,
M.
,
Hull
,
M. L.
, and
Howell
,
S. M.
,
2010
, “
Virtual Axis Finder: A New Method to Determine the Two Kinematic Axes of Rotation for the Tibio-Femoral Joint
,”
J. Biomech. Eng.
,
132
(
1
), p.
011009
.10.1115/1.4000163
14.
Roland
,
M.
,
Hull
,
M. L.
, and
Howell
,
S. M.
,
2011
, “
Validation of a New Method for Finding the Rotational Axes of the Knee Using Both Marker-Based Roentgen Stereophotogrammetric Analysis and 3D Video-Based Motion Analysis for Kinematic Measurements
,”
J. Biomech. Eng.
,
133
(
5
), p.
051003
.10.1115/1.4003437
15.
Kinzel
,
G. L.
,
Hall
,
A. S.
, Jr.
, and
Hillberry
,
B. M.
,
1972
, “
Measurement of the Total Motion between Two Body Segments–I. Analytical Development
,”
J. Biomech.
,
5
(
1
), pp.
93
105
.10.1016/0021-9290(72)90022-X
16.
Kirstukas
,
S. J.
,
Lewis
,
J. L.
, and
Erdman
,
A. G.
,
1992
, “
6r Instrumented Spatial Linkages for Anatomical Joint Motion Measurement—Part I: Design
,”
J Biomech. Eng.
,
114
(
1
), pp.
92
100
.10.1115/1.2895455
17.
Shiavi
,
R.
,
Limbird
,
T.
,
Frazer
,
M.
,
Stivers
,
K.
,
Strauss
,
A.
, and
Abramovitz
,
J.
,
1987
, “
Helical Motion Analysis of the Knee–I. Methodology for Studying Kinematics During Locomotion
,”
J. Biomech.
,
20
(
5
), pp.
459
469
.10.1016/0021-9290(87)90247-8
18.
Shiavi
,
R.
,
Limbird
,
T.
,
Frazer
,
M.
,
Stivers
,
K.
,
Strauss
,
A.
, and
Abramovitz
,
J.
,
1987
, “
Helical Motion Analysis of the Knee–II. Kinematics of Uninjured and Injured Knees During Walking and Pivoting
,”
J. Biomech.
,
20
(
7
), pp.
653
665
.10.1016/0021-9290(87)90032-7
19.
Noyes
,
F. R.
,
Grood
,
E. S.
,
Cummings
,
J. F.
, and
Wroble
,
R. R.
,
1991
, “
An Analysis of the Pivot Shift Phenomenon
,”
Am. J. Sports Med.
,
19
(
2
), pp.
148
155
.10.1177/036354659101900210
20.
Marans
,
H. J.
,
Jackson
,
R. W.
,
Glossop
,
N. D.
, and
Young
,
M. C.
,
1989
, “
Anterior Cruciate Ligament Insufficiency: A Dynamic Three-Dimensional Motion Analysis
,”
Am. J. Sports Med.
,
17
(
3
), pp.
325
332
.10.1177/036354658901700303
21.
Bylski-Austrow
,
D. I.
,
Grood
,
E. S.
,
Hefzy
,
M. S.
,
Holden
,
J. P.
, and
Butler
,
D. L.
,
1990
, “
Anterior Cruciate Ligament Replacements: A Mechanical Study of Femoral Attachment Location, Flexion Angle at Tensioning, and Initial Tension
,”
J. Orthop. Res.
,
8
(
4
), pp.
522
531
.10.1002/jor.1100080408
22.
Engebretsen
,
L.
,
Lew
,
W. D.
,
Lewis
,
J. L.
, and
Hunter
,
R. E.
,
1990
, “
The Effect of an Iliotibial Tenodesis on Intraarticular Graft Forces and Knee Joint Motion
,”
Am. J. Sports Med.
,
18
(
2
), pp.
169
176
.10.1177/036354659001800210
23.
Gertel
,
T. H.
,
Lew
,
W. D.
,
Lewis
,
J. L.
,
Stewart
,
N. J.
, and
Hunter
,
R. E.
,
1993
, “
Effect of Anterior Cruciate Ligament Graft Tensioning Direction, Magnitude, and Flexion Angle on Knee Biomechanics
,”
Am. J. Sports Med.
,
21
(
4
), pp.
572
581
.10.1177/036354659302100415
24.
Wroble
,
R. R.
,
Grood
,
E. S.
,
Cummings
,
J. S.
,
Henderson
,
J. M.
, and
Noyes
,
F. R.
,
1993
, “
The Role of the Lateral Extraarticular Restraints in the Anterior Cruciate Ligament-Deficient Knee
,”
Am. J. Sports Med.
,
21
(
2
), pp.
257
263
.10.1177/036354659302100216
25.
Wentorf
,
F. A.
,
Laprade
,
R. F.
,
Lewis
,
J. L.
, and
Resig
,
S.
,
2002
, “
The Influence of the Integrity of Posterolateral Structures on Tibiofemoral Orientation When an Anterior Cruciate Ligament Graft Is Tensioned
,”
Am. J. Sports Med.
,
30
(
6
), pp.
796
799
.
26.
Ishii
,
Y.
,
Terajima
,
K.
,
Koga
,
Y.
,
Takahashi
,
H. E.
,
Bechtold
,
J. E.
, and
Gustilo
,
R. B.
,
1995
, “
Comparison of Knee Joint Functional Laxity after Total Knee Replacement with Posterior Cruciate-Retaining and Cruciate-Substituting Prostheses
,”
The Knee
,
2
(
4
), pp.
195
199
.10.1016/0968-0160(96)00006-3
27.
Grood
,
E. S.
,
Hefzy
,
M. S.
, and
Lindenfield
,
T. N.
,
1989
, “
Factors Affecting the Region of Most Isometric Femoral Attachments
,”
Am. J. Sports Med.
,
17
(
2
), pp.
197
207
.10.1177/036354658901700209
28.
Ishii
,
Y.
,
Terajima
,
K.
,
Koga
,
Y.
,
Takahashi
,
H.
, and
Bechtold
,
J.
,
1996
, “
Influence of Total Knee Replacement (TKR) Design on Screw-Home Movement: Comparison of Five Designs for Total Knee Replacement Prostheses
,”
J. Orthop. Sci.
,
1
(
5
), pp.
313
317
.10.1007/BF02348841
29.
Ishii
,
Y.
,
Terajima
,
K.
,
Terashima
,
S.
,
Bechtold
,
J. E.
, and
Laskin
,
R. S.
,
1997
, “
Comparison of Joint Position Sense after Total Knee Arthroplasty
,”
J. Arthroplasty
,
12
(
5
), pp.
541
545
.10.1016/S0883-5403(97)90177-7
30.
Sorger
,
J. I.
,
Federle
,
D.
,
Kirk
,
P. G.
,
Grood
,
E.
,
Cochran
,
J.
, and
Levy
,
M.
,
1997
, “
The Posterior Cruciate Ligament in Total Knee Arthroplasty
,”
J. Arthroplasty
,
12
(
8
), pp.
869
879
.10.1016/S0883-5403(97)90156-X
31.
Ishii
,
Y.
,
Terajima
,
K.
,
Koga
,
Y.
,
Takahashi
,
H. E.
,
Bechtold
,
J. E.
, and
Gustilo
,
R. B.
,
1998
, “
Gait Analysis after Total Knee Arthroplasty. Comparison of Posterior Cruciate Retention and Substitution
,”
J. Orthop. Sci.
,
3
(
6
), pp.
310
317
.10.1007/s007760050058
32.
Mannor
,
D. A.
,
Shearn
,
J. T.
,
Grood
,
E. S.
,
Noyes
,
F. R.
, and
Levy
,
M. S.
,
2000
, “
Two-Bundle Posterior Cruciate Ligament Reconstruction
,”
Am. J. Sports Med.
,
28
(
6
), pp.
833
845
.
33.
Lewandowski
,
P. J.
,
Askew
,
M. J.
,
Lin
,
D. F.
,
Hurst
,
F. W.
, and
Melby
,
A.
,
1997
, “
Kinematics of Posterior Cruciate Ligament-Retaining and -Sacrificing Mobile Bearing Total Knee Arthroplasties: An in vitro Comparison of the New Jersey LCS Meniscal Bearing and Rotating Platform Prostheses
,”
J. Arthroplasty
,
12
(
7
), pp.
777
784
.10.1016/S0883-5403(97)90008-5
34.
Lewis
,
J. L.
,
Lew
,
W. D.
, and
Schmidt
,
J.
,
1988
, “
Description and Error Evaluation of an in vitro Knee Joint Testing System
,”
J. Biomech. Eng.
,
110
(
3
), pp.
238
248
.10.1115/1.3108437
35.
Kinzel
,
G. L.
,
Hillberry
,
B. M.
,
Hall
,
A. S.
, Jr.
,
Van Sickle
,
D. C.
, and
Harvey
,
W. M.
,
1972
, “
Measurement of the Total Motion between Two Body Segments – II Description of Application
,”
J. Biomech.
,
5
(
3
), pp.
283
293
.10.1016/0021-9290(72)90045-0
36.
Gatti
,
G.
,
2012
, “
On the Estimate of the Two Dominant Axes of the Knee Using an Instrumented Spatial Linkage
,”
J. Appl. Biomech.
,
28
(
2
), pp.
200
209
.
37.
Howell
,
S. M.
,
Howell
,
S. J.
, and
Hull
,
M. L.
,
2010
, “
Assessment of the Radii of the Medial and Lateral Femoral Condyles in Varus and Valgus Knees With Osteoarthritis
,”
J. Bone Joint Surg. Am.
,
92A
(
1
), pp.
98
104
.10.2106/JBJS.H.01566
38.
Paul
,
R. P.
,
1981
,
Robot Manipulators: Mathematics, Programming, and Control
,
MIT Press
,
Cambridge, MA
.
39.
Uicker
,
J.
,
Denavit
,
J.
, and
Hartenberg
,
R. S.
,
1964
, “
An Iterative Method for the Displacement Analysis of Spatial Mechanisms
,”
J. Appl. Mech.
,
31
, pp.
309
314
.10.1115/1.3629602
40.
Paden
,
B.
, and
Sastry
,
S.
,
1988
, “
Optimal Kinematic Design of 6r Manipulators
,”
Int. J. Robot Res.
,
7
(
2
), pp.
43
61
.10.1177/027836498800700204
41.
Corke
,
P. I.
,
1996
, “
A Robotics Toolbox for Matlab
,”
IEEE Robot Autom. Mag.
,
3
(
1
), pp.
24
32
.10.1109/100.486658
42.
Mayer
,
J. R. R.
,
1994
, “
High-Resolution of Rotary Encoder Analog Quadrature Signals
,”
IEEE Trans. Inst. Meas.
,
43
(
3
), pp.
494
498
.10.1109/19.293478
43.
Krasnosel'skiı˘
,
M. A.
, and
Pokrovskiı˘
,
A. V.
,
1989
,
Systems with Hysteresis, Universitext
,
Springer-Verlag
,
Berlin
.
44.
Nabeyama
,
R.
,
Matsuda
,
S.
,
Miura
,
H.
,
Mawatari
,
T.
,
Kawano
,
T.
, and
Iwamoto
,
Y.
,
2004
, “
The Accuracy of Image-Guided Knee Replacement Based on Computed Tomography
,”
J. Bone Joint Surg. Br.
,
86
(
3
), pp.
366
371
.10.1302/0301-620X.86B3.14047
45.
Mizu-Uchi
,
H.
,
Matsuda
,
S.
,
Miura
,
H.
,
Okazaki
,
K.
,
Akasaki
,
Y.
, and
Iwamoto
,
Y.
,
2008
, “
The Evaluation of Post-Operative Alignment in Total Knee Replacement Using a CT-Based Navigation System
,”
J. Bone Joint Surg. Br.
,
90
(
8
), pp.
1025
1031
.10.1302/0301-620X.90B8.20265
46.
Mizu-Uchi
,
H.
,
Matsuda
,
S.
,
Miura
,
H.
,
Higaki
,
H.
,
Okazaki
,
K.
, and
Iwamoto
,
Y.
,
2009
, “
Three-Dimensional Analysis of Computed Tomography-Based Navigation System for Total Knee Arthroplasty: The Accuracy of Computed Tomography-Based Navigation System
,”
J. Arthroplasty
,
24
(
7
), pp.
1103
1110
.10.1016/j.arth.2008.07.007
47.
Freeman
,
M. A.
, and
Pinskerova
,
V.
,
2005
, “
The Movement of the Normal Tibio-Femoral Joint
,”
J. Biomech.
,
38
(
2
), pp.
197
208
.10.1016/j.jbiomech.2004.02.006
48.
Freeman
,
M. A.
, and
Pinskerova
,
V.
,
2003
, “
The Movement of the Knee Studied by Magnetic Resonance Imaging
,”
Clin. Orthop. Relat. Res.
,
410
, pp.
35
43
.10.1097/01.blo.0000063598.67412.0d
49.
Blankevoort
,
L.
,
Huiskes
,
R.
, and
De Lange
,
A.
,
1988
, “
The Envelope of Passive Knee Joint Motion
,”
J. Biomech.
,
21
(
9
), pp.
705
720
.10.1016/0021-9290(88)90280-1
50.
Markolf
,
K. L.
,
Bargar
,
W. L.
,
Shoemaker
,
S. C.
, and
Amstutz
,
H. C.
,
1981
, “
The Role of Joint Load in Knee Stability
,”
J. Bone Joint Surg. Am.
,
63
(
4
), pp.
570
585
.
51.
Bach
,
J. M.
, and
Hull
,
M. L.
,
1995
, “
A New Load Application System for in vitro Study of Ligamentous Injuries to the Human Knee Joint
,”
J. Biomech. Eng.
,
117
(
4
), pp.
373
382
.10.1115/1.2794195
52.
Taubin
,
G.
,
1991
, “
Estimation of Planar Curves, Surfaces, and Nonplanar Space-Curves Defined by Implicit Equations With Applications to Edge and Range Image Segmentation
,”
IEEE Trans. Pattern Anal. Mach. Intell.
,
13
(
11
), pp.
1115
1138
.10.1109/34.103273
53.
Grood
,
E. S.
, and
Suntay
,
W. J.
,
1983
, “
A Joint Coordinate System for the Clinical Description of Three-Dimensional Motions: Application to the Knee
,”
J. Biomech. Eng.
,
105
(
2
), pp.
136
144
.10.1115/1.3138397
54.
Suntay
,
W. J.
,
Grood
,
E. S.
,
Hefzy
,
M. S.
,
Butler
,
D. L.
, and
Noyes
,
F. R.
,
1983
, “
Error Analysis of a System for Measuring Three-Dimensional Joint Motion
,”
J. Biomech. Eng.
,
105
(
2
), pp.
127
135
.10.1115/1.3138396
55.
Nordquist
,
J.
, and
Hull
,
M. L.
,
2007
, “
Design and Demonstration of a New Instrumented Spatial Linkage for Use in a Dynamic Environment: Application to Measurement of Ankle Rotations During Snowboarding
,”
J. Biomech. Eng.
,
129
(
2
), pp.
231
239
.10.1115/1.2486107
You do not currently have access to this content.