Though remarkably robust, articular cartilage becomes susceptible to damage at high loading rates, particularly under shear. While several studies have measured the local static and steady-state shear properties of cartilage, it is the local viscoelastic properties that determine the tissue's ability to withstand physiological loading regimens. However, measuring local viscoelastic properties requires overcoming technical challenges that include resolving strain fields in both space and time and accurately calculating their phase offsets. This study combined recently developed high-speed confocal imaging techniques with three approaches for analyzing time- and location-dependent mechanical data to measure the depth-dependent dynamic modulus and phase angles of articular cartilage. For sinusoidal shear at frequencies f = 0.01 to 1 Hz with no strain offset, the dynamic shear modulus |G*| and phase angle δ reached their minimum and maximum values (respectively) approximately 100 μm below the articular surface, resulting in a profound focusing of energy dissipation in this narrow band of tissue that increased with frequency. This region, known as the transitional zone, was previously thought to simply connect surface and deeper tissue regions. Within 250 μm of the articular surface, |G*| increased from 0.32 ± 0.08 to 0.42 ± 0.08 MPa across the five frequencies tested, while δ decreased from 12 deg ± 1 deg to 9.1 deg ± 0.5 deg. Deeper into the tissue, |G*| increased from 1.5 ± 0.4 MPa to 2.1 ± 0.6 MPa and δ decreased from 13 deg ± 1 deg to 5.5 deg ± 0.2 deg. Viscoelastic properties were also strain-dependent, with localized energy dissipation suppressed at higher shear strain offsets. These results suggest a critical role for the transitional zone in dissipating energy, representing a possible shift in our understanding of cartilage mechanical function. Further, they give insight into how focal degeneration and mechanical trauma could lead to sustained damage in this tissue.

References

References
1.
Bi
,
X.
,
Yang
,
X.
,
Bostrom
,
M. P.
, and
Camacho
,
N. P.
,
2006
, “
Fourier Transform Infrared Imaging Spectroscopy Investigations in the Pathogenesis and Repair of Cartilage
,”
Biochim. Biophys. Acta
,
1758
(
7
), pp.
934
941
.10.1016/j.bbamem.2006.05.014
2.
Bullough
,
P.
, and
Goodfellow
,
J.
,
1968
, “
The Significance of the Fine Structure of Articular Cartilage
,”
J. Bone Joint Surg. Br.
,
50
(
4
), pp.
852
857
.
3.
Guedes
,
R. M.
,
Simoes
,
J. A.
, and
Morais
,
J. L.
,
2006
, “
Viscoelastic Behaviour and Failure of Bovine Cancellous Bone Under Constant Strain Rate
,”
J. Biomech.
,
39
(
1
), pp.
49
60
.10.1016/j.jbiomech.2004.11.005
4.
Spatz
,
H. C.
,
O'Leary
,
E. J.
, and
Vincent
,
J. F.
,
1996
, “
Young's Moduli and Shear Moduli in Cortical Bone
,”
Proc. R. Soc. London, Ser. B
,
263
(
1368
), pp.
287
294
.10.1098/rspb.1996.0044
5.
Schinagl
,
R. M.
,
Ting
,
M. K.
,
Price
,
J. H.
, and
Sah
,
R. L.
,
1996
, “
Video Microscopy to Quantitate the Inhomogeneous Equilibrium Strain Within Articular Cartilage During Confined Compression
,”
Ann. Biomed. Eng.
,
24
(
4
), pp.
500
512
.10.1007/BF02648112
6.
Buckley
,
M. R.
,
Gleghorn
,
J. P.
,
Bonassar
,
L. J.
, and
Cohen
,
I.
,
2008
, “
Mapping the Depth Dependence of Shear Properties in Articular Cartilage
,”
J. Biomech.
,
41
(
11
), pp.
2430
2437
.10.1016/j.jbiomech.2008.05.021
7.
Wong
,
B. L.
,
Bae
,
W. C.
,
Chun
,
J.
,
Gratz
,
K. R.
,
Lotz
,
M.
, and
Sah
,
R. L.
,
2008
, “
Biomechanics of Cartilage Articulation: Effects of Lubrication and Degeneration on Shear Deformation
,”
Arthritis Rheum.
,
58
(
7
), pp.
2065
2074
.10.1002/art.23548
8.
Wong
,
B. L.
,
Bae
,
W. C.
,
Gratz
,
K. R.
, and
Sah
,
R. L.
,
2008
, “
Shear Deformation Kinematics During Cartilage Articulation: Effect of Lubrication, Degeneration, and Stress Relaxation
,”
Mol. Cell Biomech.
,
5
(
3
), pp.
197
206
.
9.
Hayes
,
W. C.
, and
Bodine
,
A. J.
,
1978
, “
Flow-Independent Viscoelastic Properties of Articular Cartilage Matrix
,”
J. Biomech.
,
11
(
8–9
), pp.
407
419
.10.1016/0021-9290(78)90075-1
10.
Mow
,
V. C.
,
Kuei
,
S. C.
,
Lai
,
W. M.
, and
Armstrong
,
C. G.
,
1980
, “
Biphasic Creep and Stress Relaxation of Articular Cartilage in Compression? Theory and Experiments
,”
J. Biomech. Eng.
,
102
(
1
), pp.
73
84
.10.1115/1.3138202
11.
Zhu
,
W.
,
Mow
,
V. C.
,
Koob
,
T. J.
, and
Eyre
,
D. R.
,
1993
, “
Viscoelastic Shear Properties of Articular Cartilage and the Effects of Glycosidase Treatments
,”
J. Orthop. Res.
,
11
(
6
), pp.
771
781
.10.1002/jor.1100110602
12.
Buckley
,
M. R.
,
Bergou
,
A. J.
,
Fouchard
,
J.
,
Bonassar
,
L. J.
, and
Cohen
,
I.
,
2009
, “
High-Resolution Spatial Mapping of Shear Properties in Cartilage
,”
J. Biomech.
,
43
(
4
), pp.
796
800
.10.1016/j.jbiomech.2009.10.012
13.
Bonassar
,
L. J.
,
Frank
,
E. H.
,
Murray
,
J. C.
,
Paguio
,
C. G.
,
Moore
,
V. L.
,
Lark
,
M. W.
,
Sandy
,
J. D.
,
Wu
,
J. J.
,
Eyre
,
D. R.
, and
Grodzinsky
,
A. J.
,
1995
, “
Changes in Cartilage Composition and Physical Properties Due to Stromelysin Degradation
,”
Arthritis Rheum.
,
38
(
2
), pp.
173
183
.10.1002/art.1780380205
14.
Michalek
,
A. J.
,
Buckley
,
M. R.
,
Bonassar
,
L. J.
,
Cohen
,
I.
, and
Iatridis
,
J. C.
,
2009
, “
Measurement of Local Strains in Intervertebral Disc Anulus Fibrosus Tissue Under Dynamic Shear: Contributions of Matrix Fiber Orientation and Elastin Content
,”
J. Biomech.
,
42
(
14
), pp.
2279
2285
.10.1016/j.jbiomech.2009.06.047
15.
Bruehlmann
,
S. B.
,
Matyas
,
J. R.
, and
Duncan
,
N. A.
,
2004
, “
ISSLS Prize Winner: Collagen Fibril Sliding Governs Cell Mechanics in the Anulus Fibrosus: An In Situ Confocal Microscopy Study of Bovine Discs
,”
Spine
,
29
(
23
), pp.
2612
2620
.10.1097/01.brs.0000146465.05972.56
16.
Vader
,
D.
,
Kabla
,
A.
,
Weitz
,
D.
, and
Mahadevan
,
L.
,
2009
, “
Strain-Induced Alignment in Collagen Gels
,”
PLoS ONE
,
4
(
6
), p.
e5902
.10.1371/journal.pone.0005902
17.
Taubin
,
G.
,
1991
, “
Estimation of Planar Curves, Surfaces, and Nonplanar Space-Curves Defined by Implicit Equations With Applications to Edge and Range Image Segmentation
,”
IEEE Trans. Pattern Anal. Mach. Intell.
,
13
(
11
), pp.
1115
1138
.10.1109/34.103273
18.
Lakes
,
R. S.
,
2009
,
Viscoelastic Materials
,
Cambridge University Press
,
Cambridge, England
.
19.
Radin
,
E. L.
, and
Paul
,
I. L.
,
1970
, “
Does Cartilage Compliance Reduce Skeletal Impact Loads? The Relative Force-Attenuating Properties of Articular Cartilage, Synovial Fluid, Periarticular Soft Tissues and Bone
,”
Arthritis Rheum.
,
13
(
2
), pp.
139
144
.10.1002/art.1780130206
20.
Radin
,
E. L.
,
Paul
,
I. L.
, and
Lowy
,
M.
,
1970
, “
A Comparison of the Dynamic Force Transmitting Properties of Subchondral Bone and Articular Cartilage
,”
J. Bone Joint Surg. Am.
,
52
(
3
), pp.
444
456
.
21.
Thambyah
,
A.
, and
Broom
,
N.
,
2006
, “
Micro-Anatomical Response of Cartilage-on-Bone to Compression: Mechanisms of Deformation Within and Beyond the Directly Loaded Matrix
,”
J. Anat.
,
209
(
5
), pp.
611
622
.10.1111/j.1469-7580.2006.00646.x
22.
Storm
,
C.
,
Pastore
,
J. J.
,
Mackintosh
,
F. C.
,
Lubensky
,
T. C.
, and
Janmey
,
P. A.
,
2005
, “
Nonlinear Elasticity in Biological Gels
,”
Nature
,
435
(
7039
), pp.
191
194
.10.1038/nature03521
23.
Clark
,
J. M.
,
Norman
,
A.
, and
Notzli
,
H.
,
1997
, “
Postnatal Development of the Collagen Matrix in Rabbit Tibial Plateau Articular Cartilage
,”
J. Anat.
,
191
(
Pt 2
), pp.
215
221
.10.1046/j.1469-7580.1997.19120215.x
24.
Van Turnhout
,
M. C.
,
Schipper
,
H.
,
Engel
,
B.
,
Buist
,
W.
,
Kranenbarg
,
S.
, and
Van Leeuwen
,
J. L.
,
2010
, “
Postnatal Development of Collagen Structure in Ovine Articular Cartilage
,”
BMC Dev. Biol.
,
10
, p.
62
.10.1186/1471-213X-10-62
25.
Hollander
,
A. P.
,
Pidoux
,
I.
,
Reiner
,
A.
,
Rorabeck
,
C.
,
Bourne
,
R.
, and
Poole
,
A. R.
,
1995
, “
Damage to Type II Collagen in Aging and Osteoarthritis Starts at the Articular Surface, Originates Around Chondrocytes, and Extends Into the Cartilage With Progressive Degeneration
,”
J. Clin. Invest.
,
96
(
6
), pp.
2859
2869
.10.1172/JCI118357
26.
Sah
,
R. L.
,
Doong
,
J. Y.
,
Grodzinsky
,
A. J.
,
Plaas
,
A. H.
, and
Sandy
,
J. D.
,
1991
, “
Effects of Compression on the Loss of Newly Synthesized Proteoglycans and Proteins From Cartilage Explants
,”
Arch. Biochem. Biophys.
,
286
(
1
), pp.
20
29
.10.1016/0003-9861(91)90004-3
27.
Quinn
,
T. M.
,
Grodzinsky
,
A. J.
,
Hunziker
,
E. B.
, and
Sandy
,
J. D.
,
1998
, “
Effects of Injurious Compression on Matrix Turnover Around Individual Cells in Calf Articular Cartilage Explants
,”
J. Orthop. Res.
,
16
(
4
), pp.
490
499
.10.1002/jor.1100160415
28.
Kim
,
H. K.
,
Moran
,
M. E.
, and
Salter
,
R. B.
,
1991
, “
The Potential for Regeneration of Articular Cartilage in Defects Created by Chondral Shaving and Subchondral Abrasion. An Experimental Investigation in Rabbits
,”
J. Bone Joint Surg. Am.
,
73
(
9
), pp.
1301
1315
.
29.
Milgram
,
J. W.
,
1985
, “
Injury to Articular Cartilage Joint Surfaces. I. Chondral Injury Produced by Patellar Shaving: A Histopathologic Study of Human Tissue Specimens
,”
Clin. Orthop. Relat. Res.
,
192
, pp.
168
173
.10.1097/00003086-198501000-00023
30.
Bevill
,
S. L.
,
Thambyah
,
A.
, and
Broom
,
N. D.
,
2010
, “
New Insights Into the Role of the Superficial Tangential Zone in Influencing the Microstructural Response of Articular Cartilage to Compression
,”
Osteoarthritis Cartilage
,
18
(
10
), pp.
1310
1318
.10.1016/j.joca.2010.06.008
You do not currently have access to this content.