Magnetic resonance elastography (MRE) is an imaging modality with which mechanical properties can be noninvasively measured in living tissue. Magnetic resonance elastography relies on the fact that the elastic shear modulus determines the phase velocity and, hence the wavelength, of shear waves which are visualized by motion-sensitive MR imaging. Local frequency estimation (LFE) has been used to extract the local wavenumber from displacement wave fields recorded by MRE. LFE -based inversion is attractive because it allows material parameters to be estimated without explicitly invoking the equations governing wave propagation, thus obviating the need to numerically compute the Laplacian. Nevertheless, studies using LFE have not explicitly addressed three important issues: (1) tissue viscoelasticity; (2) the effects of longitudinal waves and rigid body motion on estimates of shear modulus; and (3) mechanical anisotropy. In the current study we extend the LFE technique to (1) estimate the (complex) viscoelastic shear modulus in lossy media; (2) eliminate the effects of longitudinal waves and rigid body motion; and (3) determine two distinct shear moduli in anisotropic media. The extended LFE approach is demonstrated by analyzing experimental data from a previously-characterized, isotropic, viscoelastic, gelatin phantom and simulated data from a computer model of anisotropic (transversely isotropic) soft material.

References

References
1.
Muthupillai
,
R.
,
Lomas
,
D. J.
,
Rossman
,
P. J.
,
Greenleaf
,
J. F.
,
Manduca
,
A.
, and
Ehman
,
R. L.
,
1995
, “
Magnetic Resonance Elastography by Direct Visualization of Propagating Acoustic Strain Waves
,”
Science
,
269
(
5232
), pp.
1854
1857
.10.1126/science.7569924
2.
Kruse
,
S. A.
,
Smith
,
J. A.
,
Lawrence
,
A. J.
,
Dresner
,
M. A.
,
Manduca
,
A.
,
Greenleaf
,
J. F.
,
Ehman
,
R. L.
,
2000
, “
Tissue Characterization Using Magnetic Resonance Elastography: Preliminary Results
,”
Phys. Med. Biol.
,
45
(
6
), pp.
1579
1590
.10.1088/0031-9155/45/6/313
3.
Sinkus
,
R.
,
Lorenzen
,
J.
,
Schrader
,
D.
,
Lorenzen
,
M.
,
Dargatz
,
M.
, and
Holtz
,
D.
,
2000
, “
High-Resolution Tensor MR Elastography for Breast Tumour Detection
,”
Phys. Med. Biol.
,
45
(
6
), pp.
1649
1664
.10.1088/0031-9155/45/6/317
4.
Braun
,
J.
,
Buntkowsky
,
G.
,
Bernarding
,
J.
,
Tolxdorff
,
T.
, and
Sack
,
I.
,
2011
, “
Simulation and Analysis of Magnetic Resonance Elastography Wave Images Using Coupled Harmonic Oscillators and Gaussian Local Frequency Estimation
,”
Magn. Reson. Imaging
,
19
(
5
), pp.
703
713
.10.1016/S0730-725X(01)00387-3
5.
Manduca
,
A.
,
Oliphant
,
T. E.
,
Dresner
,
M. A.
,
Mahowald
,
J. L.
,
Kruse
,
S. A.
,
Amromin
,
E.
,
Felmlee
,
J. P.
,
Greenleaf
,
J. F.
,
Ehman
,
R. L.
,
2001
, “
Magnetic Resonance Elastography: Non-Invasive Mapping of Tissue Elasticity
,”
Med. Image Anal.
,
5
(
4
), pp.
237
254
.10.1016/S1361-8415(00)00039-6
6.
Van Houten
,
E. E.
,
Paulsen
,
K. D.
,
Miga
,
M. I.
,
Kennedy
,
F. E.
, and
Weaver
,
J. B.
,
1999
, “
An Overlapping Subzone Technique for MR-Based Elastic Property Reconstruction
,”
Magn. Reson. Med.
,
42
(
4
), pp.
779
786
.10.1002/(SICI)1522-2594(199910)42:4<779::AID-MRM21>3.0.CO;2-Z
7.
Sinkus
,
R.
,
Tanter
,
M.
,
Xydeas
,
T.
,
Catheline
,
S.
,
Bercoff
,
J.
, and
Fink
,
M.
,
2005
, “
Viscoelastic Shear Properties of In Vivo Breast Lesions Measured by MR Elastography
,”
J. Magn. Reson. Imaging
,
23
(
2
), pp.
159
165
.10.1016/j.mri.2004.11.060
8.
Klatt
,
D.
,
Hamhaber
,
U.
,
Asbach
,
P.
,
Braun
,
J.
, and
Sack
,
I.
,
2007
, “
Noninvasive Assessment of the Rheological Behavior of Human Organs Using Multifrequency MR Elastography: A Study of Brain and Liver Viscoelasticity
,”
Phys. Med. Biol.
,
52
(
24
), pp.
7281
7294
.10.1088/0031-9155/52/24/006
9.
Green
,
M. A.
,
Bilston
,
L. E.
, and
Sinkus
,
R.
,
2008
, “
In Vivo Brain Viscoelastic Properties Measured by Magnetic Resonance Elastography
,”
NMR Biomed.
,
21
(
7
), pp.
755
764
.10.1002/nbm.1254
10.
Sack
,
I.
,
Beierbach
,
B.
,
Hamhaber
,
U.
,
Klatt
,
D.
, and
Braun
,
J.
,
2008
, “
Non–invasive Measurement of Brain Viscoelasticity Using Magnetic Resonance Elastography
,”
NMR Biomed.
,
21
, pp.
265
271
.10.1002/nbm.1189
11.
Sack
,
I.
,
Rump
,
J.
,
Elgeti
,
T.
,
Samani
,
A.
, and
Braun
,
J.
,
2009
, “
MR Elastography of the Human Heart: Noninvasive Assessment of Myocardial Elasticity Changes By Shear Wave Amplitude Variations
,”
Magn. Reson. Med.
,
61
(
3
), pp.
668
677
.10.1002/mrm.21878
12.
Klatt
,
D.
,
Papazoglou
,
S.
,
Braun
,
J.
, and
Sack
,
I.
,
2010
, “
Viscoelasticity-Based MR Elastography of Skeletal Muscle
,”
Phys. Med. Biol.
,
55
, pp.
6445
6459
.10.1088/0031-9155/55/21/007
13.
Streitberger
,
K. J.
,
Wiener
,
E.
,
Hoffmann
,
J.
,
Freimann
,
F. B.
,
Klatt
,
D.
,
Braun
,
J.
,
Lin
,
K.
,
McLaughlin
,
J.
,
Sprung
,
C.
,
Klingebiel
,
R.
,
Sack
,
I.
,
2010
, “
In Vivo Viscoelastic Properties of the Brain in Normal Pressure Hydrocephalus
,”
NMR Biomed.
,
24
(
7
), pp.
385
392
.
14.
Wuerfel
,
J.
,
Paul
,
F.
,
Beierbach
,
B.
,
Hamhaber
,
U.
,
Klatt
,
D.
,
Papazoglou
,
S.
,
Zipp
,
F.
,
Martus
,
P.
,
Braun
,
J.
,
Sack
,
I.
,
2010
, “
MR-Elastography Reveals Degradation of Tissue Integrity in Multiple Sclerosis
,”
Neuroimage
,
49
(
3
), pp.
2520
2525
.10.1016/j.neuroimage.2009.06.018
15.
Clayton
,
E. H.
,
Garbow
,
J. R.
, and
Bayly
,
P. V.
,
2011
, “
Frequency-Dependent Viscoelastic Parameters of Mouse Brain Tissue Estimated by MR Elastography
,”
Phys. Med. Biol.
,
56
(
8
), pp.
2391
2406
.10.1088/0031-9155/56/8/005
16.
Riek
,
K.
,
Klatt
,
D.
,
Nuzha
,
H.
,
Mueller
,
S.
,
Neumann
,
U.
,
Sack
,
I.
,
Braun
,
J.
,
2011
, “
Wide-Range Dynamic Magnetic Resonance Elastography
,”
J. Biomech.
,
44
(
7
), pp.
1380
1386
.10.1016/j.jbiomech.2010.12.031
17.
Clayton
,
E. H.
,
Genin
,
G. M.
, and
Bayly
,
P. V.
,
2012
, “
Transmission, Attenuation and Reflection of Shear Waves in the Human Brain
,”
J. R. Soc., Interface
,
76
, pp.
2899
2910
.
18.
Chatelin
,
S.
,
Constantinesco
,
A.
, and
Willinger
,
R.
,
2010
, “
Fifty Years of Brain Tissue Mechanical Testing: From In Vitro to In Vivo Investigations
,”
Biorheology
,
47
(
5-6
), pp.
255
276
.
19.
Whitham
,
G. B.
,
1974
,
Linear and Nonlinear Waves
,
Wiley
,
New York
.
20.
Okamoto
,
R. J.
,
Clayton
,
E. H.
, and
Bayly
,
P. V.
,
2011
, “
Viscoelastic Properties of Soft Gels: Comparison of Magnetic Resonance Elastography and Dynamic Shear Testing in the Shear Wave Regime
,”
Phys. Med. Biol.
,
56
(
19
), pp.
6379
6400
.10.1088/0031-9155/56/19/014
21.
Knutsson
,
H.
,
Westin
,
C. F.
, and
Granlund
,
G. H.
,
1994
, “
Local Multiscale Frequency and Bandwidth Estimation
,”
Proceedings of the IEEE International Conference on Image Processing
, pp.
36
40
.
22.
Grimm
,
R. C.
,
Lake
,
D. S.
,
Manduca
,
A.
,
Ehman
,
R. L.
,
2006
, MRE/Wave version: 1 July 2006, Mayo Clinic, http://mayoresearch.mayo.edu/mayo/research/ehman lab/mrw-wave.cfm
23.
Kolsky
,
H.
,
1963
,
Stress Waves in Solids
,
Dover
,
New York
.
24.
Auld
,
B. A.
,
1990
,
Acoustic Fields and Waves in Solids
,
R.E. Krieger
,
Malabar, FL
.
25.
Christensen
,
R. M.
,
2005
,
Mechanics of Composite Materials
,
Dover
,
New York
.
26.
Clayton
,
E. H.
,
2012
, “
Magnetic Resonance Elastography of the Brain: From Phantom to Mouse to Man
,”
Ph.D. dissertation
,
Department of Mechanical Engineering and Materials Science, Washington University in St. Louis
,
St. Louis
.
27.
Manduca
,
A.
,
Lake
,
D. S.
,
Kruse
,
S. A.
, and
Ehman
,
R. L.
,
2003
, “
Spatio-Temporal Directional Filtering for Improved Inversion of MR Elastography Images
,”
Med. Image Anal.
,
7
(
4
), pp.
465
73
.10.1016/S1361-8415(03)00038-0
28.
Sinkus
,
R.
,
Tanter
,
M.
,
Catheline
,
S.
,
Lorenzen
,
J.
,
Kuhl
,
C.
,
Sondermann
,
E.
,
Fink
,
M.
,
2005
, “
Imaging Anisotropic and Viscous Properties of Breast Tissue by Magnetic Resonance Elastography
,”
Magn. Reson. Med.
,
53
(
2
), pp.
372
387
.10.1002/mrm.20355
29.
Romano
,
A. J.
,
Scheel
,
M.
,
Hirsch
,
S.
,
Braun
,
J.
, and
Sack
,
I.
,
2012
, “
In Vivo Waveguide Elastography of White Matter Tracts in the Human Brain
,”
Magn. Reson. Med.
(epub ahead of print).
30.
Spencer
,
A. J. M.
,
1984
,
Continuum Theory of the Mechanics of Fibre-Reinforced Composites
,
Springer-Verlag
,
Berlin
.
You do not currently have access to this content.