Calcific aortic valve disease is the most common and life threatening form of valvular heart disease, characterized by stenosis and regurgitation, which is currently treated at the symptomatic end-stages via open-heart surgical replacement of the diseased valve with, typically, either a xenograft tissue valve or a pyrolytic carbon mechanical heart valve. These options offer the clinician a choice between structural valve deterioration and chronic anticoagulant therapy, respectively, effectively replacing one disease with another. Polymeric prosthetic heart valves (PHV) offer the promise of reducing or eliminating these complications, and they may be better suited for the new transcatheter aortic valve replacement (TAVR) procedure, which currently utilizes tissue valves. New evidence indicates that the latter may incur damage during implantation. Polymer PHVs may also be incorporated into pulsatile circulatory support devices such as total artificial heart and ventricular assist devices that currently employ mechanical PHVs. Development of polymer PHVs, however, has been slow due to the lack of sufficiently durable and biocompatible polymers. We have designed a new trileaflet polymer PHV for surgical implantation employing a novel polymer—xSIBS—that offers superior bio-stability and durability. The design of this polymer PHV was optimized for reduced stresses, improved hemodynamic performance, and reduced thrombogenicity using our device thrombogenicity emulation (DTE) methodology, the results of which have been published separately. Here we present our new design, prototype fabrication methods, hydrodynamics performance testing, and platelet activation measurements performed in the optimized valve prototype and compare it to the performance of a gold standard tissue valve. The hydrodynamic performance of the two valves was comparable in all measures, with a certain advantage to our valve during regurgitation. There was no significant difference between the platelet activation rates of our polymer valve and the tissue valve, indicating that similar to the latter, its recipients may not require anticoagulation. This work proves the feasibility of our optimized polymer PHV design and brings polymeric valves closer to clinical viability.

References

References
1.
Rosamond
,
W.
,
Flegal
,
K.
,
Friday
,
G.
,
Furie
,
K.
,
Go
,
A.
,
Greenlund
,
K.
,
Haase
,
N.
,
Ho
,
M.
,
Howard
,
V.
,
Kissela
,
B.
,
Kittner
,
S.
,
Lloyd-Jones
,
D.
,
Mcdermott
,
M.
,
Meigs
,
J.
,
Moy
,
C.
,
Nichol
,
G.
,
O'Donnell
,
C. J.
,
Roger
,
V.
,
Rumsfeld
,
J.
,
Sorlie
,
P.
,
Steinberger
,
J.
,
Thom
,
T.
,
Wasserthiel-Smoller
,
S.
, and
Hong
,
Y.
,
2007
, “
Heart Disease and Stroke Statistics–2007 Update: A Report From the American Heart Association Statistics Committee and Stroke Statistics Subcommittee
,”
Circulation
,
115
(
5
), pp.
e69
e171
.10.1161/CIRCULATIONAHA.106.179918
2.
Rahimtoola
,
S. H.
,
2010
, “
Choice of Prosthetic Heart Valve in Adults: An Update
,”
J.Am. Coll. Cardiol.
,
55
(
22
), pp.
2413
2426
.10.1016/j.jacc.2009.10.085
3.
Rosengart
,
T. K.
,
Feldman
,
T.
,
Borger
,
M. A.
,
Vassiliades
,
T. A.
Jr.
,
Gillinov
,
A. M.
,
Hoercher
,
K. J.
,
Vahanian
,
A.
,
Bonow
,
R. O.
, and
O'Neill
,
W.
,
2008
, “
Percutaneous and Minimally Invasive Valve Procedures: A Scientific Statement From the American Heart Association Council on Cardiovascular Surgery and Anesthesia, Council on Clinical Cardiology, Functional Genomics and Translational Biology Interdisciplinary Working Group and Quality of Care and Outcomes Research Interdisciplinary Working Group
,”
Circulation
,
117
(
13
), pp.
1750
1767
.10.1161/CIRCULATIONAHA.107.188525
4.
Reynolds
,
M. R.
,
Magnuson
,
E. A.
,
Wang
,
K.
,
Lei
,
Y.
,
Vilain
,
K.
,
Walczak
,
J.
,
Kodali
,
S. K.
,
Lasala
,
J. M.
,
O'Neill
,
W. W.
,
Davidson
,
C. J.
,
Smith
,
C. R.
,
Leon
,
M. B.
, and
Cohen
,
D. J.
,
2012
, “
Cost-Effectiveness of Transcatheter Aortic Valve Replacement Compared With Standard Care Among Inoperable Patients With Severe Aortic Stenosis: Results From the Placement of Aortic Transcatheter Valves (Partner) Trial (Cohort B)
,”
Circulation
,
125
(
9
), pp.
1102
1109
.10.1161/CIRCULATIONAHA.111.054072
5.
Zegdi
,
R.
,
Bruneval
,
P.
,
Blanchard
,
D.
, and
Fabiani
,
J. N.
,
2011
, “
Evidence of Leaflet Injury During Percutaneous Aortic Valve Deployment
,”
Eur. J. Cardiothorac. Surg.
,
40
(
1
), pp.
257
259
.10.1016/j.ejcts.2010.11.010
6.
De Buhr
,
W.
,
Pfeifer
,
S.
,
Slotta-Huspenina
,
J.
,
Wintermantel
,
E.
,
Lutter
,
G.
, and
Goetz
,
W. A.
,
2012
, “
Impairment of Pericardial Leaflet Structure From Balloon-Expanded Valved Stents
,”
J. Thorac. Cardiovasc. Surg.
,
143
(
6
), pp.
1417
1421
.10.1016/j.jtcvs.2011.11.001
7.
Platis
,
A.
, and
Larson
,
D. F.
,
2009
, “
Cardiowest Temporary Total Artificial Heart
,”
Perfusion
,
24
(
5
), pp.
341
346
.10.1177/0267659109351330
8.
Roszelle
,
B. N.
,
Deutsch
,
S.
, and
Manning
,
K. B.
,
2010
, “
A Parametric Study of Valve Orientation on the Flow Patterns of the Penn State Pulsatile Pediatric Ventricular Assist Device
,”
ASAIO J.
,
56
(
4
), pp.
356
363
.10.1097/MAT.0b013e3181e3cb22
9.
Ghanbari
,
H.
,
Viatge
,
H.
,
Kidane
,
A. G.
,
Burriesci
,
G.
,
Tavakoli
,
M.
, and
Seifalian
,
A. M.
,
2009
, “
Polymeric Heart Valves: New Materials, Emerging Hopes
,”
Trends Biotechnol.
,
27
(
6
), pp.
359
367
.10.1016/j.tibtech.2009.03.002
10.
Ten Berge
,
L.
,
1958
, “
A Flexible Cardiac Valve Prosthesis; Preliminary Report on the Development of an Experimental Valvular Prosthesis
,”
Arch. Chir. Neerl.
,
10
(
1
), pp.
26
33
.
11.
Mackay
,
T. G.
,
Wheatley
,
D. J.
,
Bernacca
,
G. M.
,
Fisher
,
A. C.
, and
Hindle
,
C. S.
,
1996
, “
New Polyurethane Heart Valve Prosthesis: Design, Manufacture and Evaluation
,”
Biomaterials
,
17
(
19
), pp.
1857
1863
.10.1016/0142-9612(95)00242-1
12.
Claiborne
,
T. E.
,
Bluestein
,
D.
, and
Schoephoerster
,
R. T.
,
2009
, “
Development and Evaluation of a Novel Artificial Catheter-Deliverable Prosthetic Heart Valve and Method for In Vitro Testing
,”
Int. J. Artif. Organs
,
32
(
5
), pp.
262
271
. Available at http://www.artificial-organs.com/article/development-and-evaluation-of-a-novel-artificial-catheter-deliverable-prosthetic-heart-valve-and-method-for-in-vitro-testing-art005959
13.
Rahmani
,
B.
,
Tzamtzis
,
S.
,
Ghanbari
,
H.
,
Burriesci
,
G.
, and
Seifalian
,
A. M.
,
2012
, “
Manufacturing and Hydrodynamic Assessment of a Novel Aortic Valve Made of a New Nanocomposite Polymer
,”
J. Biomech.
,
45
(7)
, pp.
1205
1211
.
14.
Gallocher
,
S. L.
,
Aguirre
,
A. F.
,
Kasyanov
,
V.
,
Pinchuk
,
L.
, and
Schoephoerster
,
R. T.
,
2006
, “
A Novel Polymer for Potential Use in a Trileaflet Heart Valve
,”
J. Biomed. Mater. Res., Part B: Appl. Biomater.
,
79
(
2
), pp.
325
334
.10.1002/jbm.b.30546
15.
Daebritz
,
S. H.
,
Fausten
,
B.
,
Hermanns
,
B.
,
Franke
,
A.
,
Schroeder
,
J.
,
Groetzner
,
J.
,
Autschbach
,
R.
,
Messmer
,
B. J.
, and
Sachweh
,
J. S.
,
2004
, “
New Flexible Polymeric Heart Valve Prostheses for the Mitral and Aortic Positions
,”
Heart Surg. Forum
,
7
(
5
), pp.
E525
E532
.10.1532/HSF98.20041083
16.
Hernandez
,
R.
,
Weksler
,
J.
,
Padsalgikar
,
A.
, and
Runt
,
J.
,
2008
, “
In Vitro Oxidation of High Polydimethylsiloxane Content Biomedical Polyurethanes: Correlation With the Microstructure
,”
J. Biomed. Mater. Res. Part A
,
87
(
2
), pp.
546
556
.10.1002/jbm.a.31823
17.
Kutting
,
M.
,
Roggenkamp
,
J.
,
Urban
,
U.
,
Schmitz-Rode
,
T.
, and
Steinseifer
,
U.
,
2011
, “
Polyurethane Heart Valves: Past, Present and Future
,”
Expert Rev. Med. Devices
,.
8
(
2
), pp.
227
233
.10.1586/erd.10.79
18.
Pinchuk
,
L.
,
Wilson
,
G. J.
,
Barry
,
J. J.
,
Schoephoerster
,
R. T.
,
Parel
,
J. M.
, and
Kennedy
,
J. P.
,
2008
, “
Medical Applications of Poly(Styrene-Block-Isobutylene-Block-Styrene) (”SIBS“)
,”
Biomaterials
,
29
(
4
), pp.
448
460
.10.1016/j.biomaterials.2007.09.041
19.
Pinchuk
,
L.
And Zhou
,
Y.
,
2009
, “Crosslinked Polyolefins For Biomedical Applicatios And Method of Making Same,” US Patent pending Application No. 20090124773.
20.
Ding
,
N.
,
Pacetti
,
S. D.
,
Tang
,
F. W.
,
Gada
,
M.
, and
Roorda
,
W.
,
2009
, “
Xience V (Tm) Stent Design and Rationale
,”
J. Interv. Cardiol.
,
22
, pp.
S18
S27
.10.1111/j.1540-8183.2009.00450.x
21.
Kalita
,
H.
, and
Karak
,
N.
,
2012
, “
Bio-Based Elastomeric Hyperbranched Polyurethanes for Shape Memory Application
,”
Iran. Polym. J.
,
21
(
4
), pp.
263
271
.10.1007/s13726-012-0025-2
22.
Claiborne
,
T. E.
,
Girdhar
,
G.
,
Gallocher-Lowe
,
S.
,
Sheriff
,
J.
,
Kato
,
Y. P.
,
Pinchuk
,
L.
,
Schoephoerster
,
R. T.
,
Jesty
,
J.
, and
Bluestein
,
D.
,
2011
, “
Thrombogenic Potential of Innovia Polymer Valves Versus Carpentier-Edwards Perimount Magna Aortic Bioprosthetic Valves
,”
ASAIO.J
,
57
(
1
), pp.
26
31
.10.1097/MAT.0b013e3181fcbd86
23.
Duraiswamy
,
N.
,
Choksi
,
T. D.
,
Pinchuk
,
L.
, and
Schoephoerster
,
R. T.
,
2009
, “
A Phospholipid-Modified Polystyrene-Polyisobutylene-Polystyrene (SIBS) Triblock Polymer for Enhanced Hemocompatibility and Potential Use in Artificial Heart Valves
,”
J. Biomater. Appl.
,
23
(
4
), pp.
367
379
.10.1177/0885328208093854
24.
Yin
,
W.
,
Gallocher
,
S.
,
Pinchuk
,
L.
,
Schoephoerster
,
R. T.
,
Jesty
,
J.
, and
Bluestein
,
D.
,
2005
, “
Flow-Induced Platelet Activation in a St. Jude Mechanical Heart Valve, a Trileaflet Polymeric Heart Valve, and a St. Jude Tissue Valve
,”
Artif. Organs
,
29
(
10
), pp.
826
831
.10.1111/j.1525-1594.2005.29109.x
25.
Wang
,
Q.
,
McGoron
,
A. J.
,
Bianco
,
R.
,
Kato
,
Y.
,
Pinchuk
,
L.
, and
Schoephoerster
,
R. T.
,
2010
, “
In-Vivo Assessment of a Novel Polymer (SIBS) Trileaflet Heart Valve
,”
J. Heart Valve Dis.
,
19
(
4
), pp.
499
505
.
26.
Wang
,
Q.
,
McGoron
,
A. J.
,
Pinchuk
,
L.
, and
Schoephoerster
,
R. T.
,
2010
, “
A Novel Small Animal Model for Biocompatibility Assessment of Polymeric Materials for Use in Prosthetic Heart Valves
,”
J. Biomed. Mater. Res. Part A
,
93
(
2
), pp.
442
453
.10.1002/jbm.a.32562
27.
El Fray
,
M.
,
Prowans
,
P.
,
Puskas
,
J. E.
, and
Altstadt
,
V.
,
2006
, “
Biocompatibility and Fatigue Properties of Polystyrene-Polyisobutylene-Polystyrene, an Emerging Thermoplastic Elastomeric Biomaterial
,”
Biomacromolecules
,
7
(
3
), pp.
844
850
.10.1021/bm050971c
28.
Xenos
,
M.
,
Girdhar
,
G.
,
Alemu
,
Y.
,
Jesty
,
J.
,
Slepian
,
M.
,
Einav
,
S.
, and
Bluestein
,
D.
,
2010
, “
Device Thrombogenicity Emulator (DTE)—Design Optimization Methodology for Cardiovascular Devices: A Study in Two Bileaflet MHV Designs
,”
J. Biomech.
,
43
(
12
), pp.
2400
2409
.10.1016/j.jbiomech.2010.04.020
29.
Girdhar
,
G.
,
Xenos
,
M.
,
Alemu
,
Y.
,
Chiu
,
W. C.
,
Lynch
,
B. E.
,
Jesty
,
J.
,
Einav
,
S.
,
Slepian
,
M. J.
, and
Bluestein
,
D.
,
2012
, “
Device Thrombogenicity Emulation: A Novel Method for Optimizing Mechanical Circulatory Support Device Thromboresistance
,”
PLoS ONE
,
7
(
3
), p.
e32463
.10.1371/journal.pone.0032463
30.
Thubrikar
,
M.
,
1990
,
The Aortic Valve
,
CRC
,
Boca Raton
.
31.
Gallocher
,
S. L.
,
2007
, “
Durability Assessment of Polymer Trileaflet Valves
,”
ProQuest ETD Collection for FIU
,
Floriday International University
, 236 pages.
32.
Bathe
,
K.-J.
,
1987
,
Nonlinear Finite Element Analysis and ADINA: Proceedings of the 6th ADINA Conference
,
Massachusetts Institute of Technology
, June 10–12, Pergamon, New York.
33.
Peter
,
D. A.
,
Alemu
,
Y.
,
Xenos
,
M.
,
Weisberg
,
O.
,
Avneri
,
I.
,
Eshkol
,
M.
,
Oren
,
T.
,
Elazar
,
M.
,
Assaf
,
Y.
, and
Bluestein
,
D.
,
2012
, “
Fluid Structure Interaction With Contact Surface Methodology for Evaluation of Endovascular Carotid Implants for Drug-Resistant Hypertension Treatment
,”
ASME J. Biomech. Eng.
,
134
(
4
), p.
041001
.10.1115/1.4006339
34.
Gallocher
,
S. L.
,
2007
, “
Durability Assessment of Polymer Trileaflet Heart Valves
,” Ph.D. thesis, Florida International University, Miami, http://digitalcommons.fiu.edu/dissertations/AAI3299201
35.
Tang
,
D.
,
Yang
,
C.
,
Geva
,
T.
,
Gaudette
,
G.
, and
Del Nido
,
P. J.
,
2011
, “
Multi-Physics MRI-Based Two-Layer Fluid-Structure Interaction Anisotropic Models of Human Right and Left Ventricles With Different Patch Materials: Cardiac Function Assessment and Mechanical Stress Analysis
,”
Comput Struct
,
89
(
11–12
), pp.
1059
1068
.10.1016/j.compstruc.2010.12.012
36.
Jesty
,
J.
, and
Bluestein
,
D.
,
1999
, “
Acetylated Prothrombin as a Substrate in the Measurement of the Procoagulant Activity of Platelets: Elimination of the Feedback Activation of Platelets by Thrombin
,”
Anal Biochem
,
272
(
1
), pp.
64
70
.10.1006/abio.1999.4148
37.
Sun
,
W.
,
Abad
,
A.
, and
Sacks
,
M. S.
,
2005
, “
Simulated Bioprosthetic Heart Valve Deformation Under Quasi-Static Loading
,”
ASME J. Biomech. Eng.
,
127
(
6
), pp.
905
914
.10.1115/1.2049337
38.
Marquez
,
S.
,
Hon
,
R. T.
, and
Yoganathan
,
A. P.
,
2001
, “
Comparative Hydrodynamic Evaluation of Bioprosthetic Heart Valves
,”
J. Heart Valve Dis.
,
10
(
6
), pp.
802
811
.
You do not currently have access to this content.