Pulmonary arterial hypertension (PAH) is a rapidly fatal disease in which mortality is typically due to right ventricular (RV) failure. An excellent predictor of mortality in PAH is proximal pulmonary artery stiffening, which is mediated by collagen accumulation in hypoxia-induced pulmonary hypertension (HPH) in mice. We sought to investigate the impact of limiting vascular and ventricular collagen accumulation on RV function and the hemodynamic coupling efficiency between the RV and pulmonary vasculature. Inbred mice were exposed to chronic hypoxia for 10 days with either no treatment (HPH) or with treatment with a proline analog that impairs collagen synthesis (CHOP-PEG; HPH + CP). Both groups were compared to control mice (CTL) exposed only to normoxia (no treatment). An admittance catheter was used to measure pressure-volume loops at baseline and during vena cava occlusion, with mice ventilated with either room air or 8% oxygen, from which pulmonary hemodynamics, RV function, and ventricular-vascular coupling efficiency (ηvvc) were calculated. Proline analog treatment limited increases in RV afterload (neither effective arterial elastance Ea nor total pulmonary vascular resistance significantly increased compared to CTL with CHOP-PEG), limited the development of pulmonary hypertension (CHOP-PEG reduced right ventricular systolic pressure by 10% compared to HPH, p < 0.05), and limited RV hypertrophy (CHOP-PEG reduced RV mass by 18% compared to HPH, p < 0.005). In an acutely hypoxic state, treatment improved RV function (CHOP-PEG increased end-systolic elastance Ees by 43%, p < 0.05) and maintained ηvvc at control, room air levels. CHOP-PEG also decreased lung collagen content by 12% measured biochemically compared to HPH (p < 0.01), with differences evident in large and small pulmonary arteries by histology. Our results demonstrate that preventing new collagen synthesis limits pulmonary hypertension development by reducing collagen accumulation in the pulmonary arteries that affect RV afterload. In particular, the proline analog limited structural and functional changes in distal pulmonary arteries in this model of early and somewhat mild pulmonary hypertension. We conclude that collagen plays an important role in small pulmonary artery remodeling and, thereby, affects RV structure and function changes induced by chronic hypoxia.

References

1.
D'Alonzo
,
G. E.
,
Barst
,
R. J.
,
Ayres
,
S. M.
,
Bergofsky
,
E. H.
,
Brundage
,
B. H.
,
Detre
,
K. M.
,
Fishman
,
A. P.
,
Goldring
,
R. M.
,
Groves
,
B. M.
,
Kernis
,
J. T.
,
Levy
,
P. S.
,
Pietra
,
G. G.
,
Reid
,
L. M.
,
Reeves
,
J. T.
,
Rich
,
S.
,
Vreim
,
C. E.
,
Williams
,
G. W.
, and
Wu
,
M.
,
1991
, “
Survival in Patients With Primary Pulmonary Hypertension. Results From a National Prospective Registry
,”
Ann. Intern. Med.
,
115
(
5
), pp.
343
349
.
2.
Humbert
,
M.
,
Sitbon
,
O.
,
Chaouat
,
A.
,
Bertocchi
,
M.
,
Habib
,
G.
,
Gressin
,
V.
,
Yaici
,
A.
,
Weitzenblum
,
E.
,
Cordier
,
J. F.
,
Chabot
,
F.
,
Dromer
,
C.
,
Pison
,
C.
,
Reynaud-Gaubert
,
M.
,
Haloun
,
A.
,
Laurent
,
M.
,
Hachulla
,
E.
,
Cottin
,
V.
,
Degano
,
B.
,
Jais
,
X.
,
Montani
,
D.
,
Souza
,
R.
, and
Simonneau
,
G.
,
2010
, “
Survival in Patients With Idiopathic, Familial, and Anorexigen-Associated Pulmonary Arterial Hypertension in the Modern Management Era
,”
Circulation
,
122
(
2
), pp.
156
163
.10.1161/CIRCULATIONAHA.109.911818
3.
Pacher
,
P. N. T.
,
Mukhopadhyay
,
P.
,
Batkai
,
S.
, and
Kass
,
D. A.
,
2008
, “
Measurement of Cardiac Function Using Pressure-Volume Conductance Catheter Technique in Mice and Rats
,”
Nat. Protoc.
,
3
, pp.
1422
1434
.10.1038/nprot.2008.138
4.
Porterfield
,
J. E. K. A.
,
Raghavan
,
K.
,
Escobedo
,
D.
,
Jenkins
,
J. T.
,
Larson
,
E. R.
,
Trevino
,
R. J.
,
Valvano
,
J. W.
,
Pearce
,
J. A.
, and
Feldman
,
M. D.
,
2009
, “
Dynamic Correction for Parallel Conductance, GP, and Gain Factor, Alpha, in Invasive Murine Left Ventricular Volume Measurements
,”
J. Appl. Phys.
,
107
, pp.
1864
1869
.10.1152/japplphysiol.00392.2009
5.
Tozzi
,
C. A.
,
Christiansen
,
D. L.
,
Poiani
,
G. J.
, and
Riley
,
D. J.
,
1994
, “
Excess Collagen in Hypertensive Pulmonary Arteries Decreases Vascular Distensibility
,”
Am. J. Respir. Crit. Care Med.
,
149
(
5
), pp.
1317
1326
.
6.
Ooi
,
C. Y.
,
Wang
,
Z.
,
Tabima
,
D. M.
,
Eickhoff
,
J. C.
, and
Chesler
,
N. C.
,
2010
, “
The Role of Collagen in Extralobar Pulmonary Artery Stiffening in Response to Hypoxia-Induced Pulmonary Hypertension
,”
Am. J. Physiol. Heart Circ. Physiol.
,
299
(
6
), pp.
H1823
1831
.10.1152/ajpheart.00493.2009
7.
Wang
,
Z.
, and
Chesler
,
N. C.
,
2012
, “
Role of Collagen Content and Cross-Linking in Large Pulmonary Arterial Stiffening After Chronic Hypoxia
,”
Biomech. Model. Mechanobiol.
,
11
(
1–2
), pp.
279
289
.10.1007/s10237-011-0309-z
8.
Estrada
,
K. D.
, and
Chesler
,
N. C.
,
2009
, “
Collagen-Related Gene and Protein Expression Changes in the Lung in Response to Chronic Hypoxia
,”
Biomech. Model. Mechanobiol.
,
8
(
4
), pp.
263
272
.10.1007/s10237-008-0133-2
9.
Simon
,
P. M.
,
Pachence
,
J.
,
Belinka
,
B.
,
Poiani
,
G. J.
,
Lu
,
S. E.
,
Tozzi
,
C. A.
, and
Riley
,
D. J.
,
2006
, “
Prodrug of Proline Analogue Reduces Hypoxic Pulmonary Hypertension in Rats
,”
Pulm. Pharmacol. Ther.
,
19
(
4
), pp.
242
250
.10.1016/j.pupt.2005.07.001
10.
Poiani
,
G. J.
,
Riley
,
D. J.
,
Fox
,
J. D.
,
Kemnitzer
,
J. E.
,
Gean
,
K. F.
, and
Kohn
,
J.
,
1994
, “
Conjugates of Cis-4-Hydroxy-L-Proline and Poly(PEG-Lys), a Water Soluble Poly(Ether Urethane): Synthesis and Evaluation of Antifibrotic Effects In Vitro and In Vivo
,”
Bioconjugate Chem.
,
5
(
6
), pp.
621
630
.10.1021/bc00030a018
11.
Poiani
,
G. J.
,
Tozzi
,
C. A.
,
Choe
,
J. K.
,
Yohn
,
S. E.
, and
Riley
,
D. J.
,
1990
, “
An Antifibrotic Agent Reduces Blood Pressure in Established Pulmonary Hypertension in the Rat
,”
J. Appl. Physiol.
,
68
(
4
), pp.
1542
1547
.
12.
Kerr
,
J. S.
,
Ruppert
,
C. L.
,
Tozzi
,
C. A.
,
Neubauer
,
J. A.
,
Frankel
,
H. M.
,
Yu
,
S. Y.
, and
Riley
,
D. J.
,
1987
, “
Reduction of Chronic Hypoxic Pulmonary Hypertension in the Rat by an Inhibitor of Collagen Production
,”
Am. Rev. Respir. Dis.
,
135
(
2
), pp.
300
306
.
13.
Sagawa
,
K. M. L.
,
Maughan
,
L.
,
Suga
,
H.
, and
Sunagawa
,
K.
,
1988
,
Cardiac Contraction and the Pressure-Volume Relationship
,
Oxford University Press
,
London
.
14.
Sagawa
,
K.
,
1981
, “
The End-Systolic Pressure-Volume Relation of the Ventricle: Definition, Modifications and Clinical Use
,”
Circulation
,
63
(
6
), pp.
1223
1227
.10.1161/01.CIR.63.6.1223
15.
Burkhoff
,
D.
,
Mirsky
,
I.
, and
Suga
,
H.
,
2005
, “
Assessment of Systolic and Diastolic Ventricular Properties via Pressure-Volume Analysis: A Guide for Clinical, Translational, and Basic Researchers
,”
Am. J. Physiol. Heart Circ. Physiol.
,
289
(
2
), pp.
H501
512
.10.1152/ajpheart.00138.2005
16.
Tabima
,
D. M.
,
Hacker
,
T. A.
, and
Chesler
,
N. C.
,
2010
, “
Measuring Right Ventricular Function in the Normal and Hypertensive Mouse Hearts Using Admittance-Derived Pressure-Volume Loops
,”
Am. J. Physiol. Heart Circ. Physiol.
,
299
(
6
), pp.
H2069
2075
.10.1152/ajpheart.00805.2010
17.
Rubin
,
L. J.
,
1997
, “
Primary Pulmonary Hypertension
,”
N. Engl. J. Med.
,
336
(
2
), pp.
111
117
.10.1056/NEJM199701093360207
18.
Gomez-Arroyo
,
J.
,
Saleem
,
S. J.
,
Mizuno
,
S.
,
Syed
,
A. A.
,
Bogaard
,
H. J.
,
Abbate
,
A.
,
Taraseviciene-Stewart
,
L.
,
Sung
,
Y.
,
Kraskauskas
,
D.
,
Farkas
,
D.
,
Conrad
,
D. H.
,
Nicolls
,
M. R.
, and
Voelkel
,
N. F.
,
2012
, “
A Brief Overview of Mouse Models of Pulmonary Arterial Hypertension: Problems and Prospects
,”
Am. J. Physiol. Lung Cell. Mol. Physiol.
,
302
(
10
), pp.
L977
991
.10.1152/ajplung.00362.2011
19.
Nicolls
,
M. R.
,
Mizuno
,
S.
,
Taraseviciene-Stewart
,
L.
,
Farkas
,
L.
,
Drake
,
J. I.
,
Husseini
,
A. A.
,
Gomez-Arroyo
,
J.
,
Voelkel
,
N.
, and
Bogaard
,
H.
,
2012
, “
New Models of Pulmonary Hypertension Based on VEGF Receptor Blockage-Induced Endothelial Cell Apoptosis
,”
Pulm. Circ.
,
2
(
4
), pp.
434
442
.10.4103/2045-8932.105031
20.
Ciuclan
,
L.
,
Bonneau
,
O.
,
Hussey
,
M.
,
Duggan
,
N.
,
Holmes
,
A. M.
,
Good
,
R.
,
Stringer
,
R.
,
Jones
,
P.
,
Morrell
,
N. W.
,
Jarai
,
G.
,
Walker
,
C.
,
Westwick
,
J.
, and
Thomas
,
M.
,
2011
, “
A Novel Murine Model of Severe Pulmonary Arterial Hypertension
,”
Am. J. Respir. Crit Care Med.
,
184
(
10
), pp.
1171
1182
.10.1164/rccm.201103-0412OC
21.
Bernardo
,
B. C.
,
Weeks
,
K. L.
,
Pretorius
,
L.
, and
McMullen
,
J. R.
,
2010
, “
Molecular Distinction Between Physiological and Pathological Cardiac Hypertrophy: Experimental Findings and Therapeutic Strategies
,”
Pharmacol. Ther.
,
128
(
1
), pp.
191
227
.10.1016/j.pharmthera.2010.04.005
22.
Fujita
,
M.
,
Mason
,
R. J.
,
Cool
,
C.
,
Shannon
,
J. M.
,
Hara
,
N.
, and
Fagan
,
K. A.
,
2002
, “
Pulmonary Hypertension in TNF-Alpha-Overexpressing Mice is Associated With Decreased VEGF Gene Expression
,”
J. Appl. Physiol.
,
93
(
6
), pp.
2162
2170
. Available at: http://www.ncbi.nlm.nih.gov/pubmed/12391106
23.
Nikam
,
V. S.
,
Schermuly
,
R. T.
,
Dumitrascu
,
R.
,
Weissmann
,
N.
,
Kwapiszewska
,
G.
,
Morrell
,
N.
,
Klepetko
,
W.
,
Fink
,
L.
,
Seeger
,
W.
, and
Voswinckel
,
R.
,
2010
, “
Treprostinil Inhibits the Recruitment of Bone Marrow-Derived Circulating Fibrocytes in Chronic Hypoxic Pulmonary Hypertension
,”
Eur. Respir. J.
,
36
(
6
), pp.
1302
1314
.10.1183/09031936.00028009
24.
Ochoa
,
C. D.
,
Yu
,
L.
,
Al-Ansari
,
E.
,
Hales
,
C. A.
, and
Quinn
,
D. A.
,
2010
, “
Thrombospondin-1 Null Mice are Resistant to Hypoxia-Induced Pulmonary Hypertension
,”
J. Card. Surg.
,
5
, pp.
32
38
.10.1186/1749-8090-5-32
25.
Schermuly
,
R. T.
,
Dony
,
E.
,
Ghofrani
,
H. A.
,
Pullamsetti
,
S.
,
Savai
,
R.
,
Roth
,
M.
,
Sydykov
,
A.
,
Lai
,
Y. J.
,
Weissmann
,
N.
,
Seeger
,
W.
, and
Grimminger
,
F.
,
2005
, “
Reversal of Experimental Pulmonary Hypertension by PDGF Inhibition
,”
J. Clin. Invest.
,
115
(
10
), pp.
2811
2821
.10.1172/JCI24838
26.
Scherrer-Crosbie
,
M.
,
Steudel
,
W.
,
Hunziker
,
P. R.
,
Foster
,
G. P.
,
Garrido
,
L.
,
Liel-Cohen
,
N.
,
Zapol
,
W. M.
, and
Picard
,
M. H.
,
1998
, “
Determination of Right Ventricular Structure and Function in Normoxic and Hypoxic Mice: A Transesophageal Echocardiographic Study
,”
Circulation
,
98
(
10
), pp.
1015
1021
.10.1161/01.CIR.98.10.1015
27.
Beppu
,
H.
,
Ichinose
,
F.
,
Kawai
,
N.
,
Jones
,
R. C.
,
Yu
,
P. B.
,
Zapol
,
W. M.
,
Miyazono
,
K.
,
Li
,
E.
, and
Bloch
,
K. D.
,
2004
, “
BMPR-II Heterozygous Mice Have Mild Pulmonary Hypertension and an Impaired Pulmonary Vascular Remodeling Response to Prolonged Hypoxia
,”
Am. J. Physiol. Lung Cell. Mol. Physiol.
,
287
(
6
), pp.
L1241
1247
.10.1152/ajplung.00239.2004
28.
Champion
,
H. C.
,
Villnave
,
D. J.
,
Tower
,
A.
,
Kadowitz
,
P. J.
, and
Hyman
,
A. L.
,
2000
, “
A Novel Right-Heart Catheterization Technique for In Vivo Measurement of Vascular Responses in Lungs of Intact Mice
,”
Am. J. Physiol. Heart Circ. Physiol.
,
278
(
1
), pp.
H8
H15
.
29.
Zhao
,
L.
,
Long
,
L.
,
Morrell
,
N. W.
, and
Wilkins
,
M. R.
,
1999
, “
NPR-A-Deficient Mice Show Increased Susceptibility to Hypoxia-Induced Pulmonary Hypertension
,”
Circulation
,
99
(
5
), pp.
605
607
.10.1161/01.CIR.99.5.605
30.
Steudel
,
W.
,
Scherrer-Crosbie
,
M.
,
Bloch
,
K. D.
,
Weimann
,
J.
,
Huang
,
P. L.
,
Jones
,
R. C.
,
Picard
,
M. H.
, and
Zapol
,
W. M.
,
1998
, “
Sustained Pulmonary Hypertension and Right Ventricular Hypertrophy After Chronic Hypoxia in Mice With Congenital Deficiency of Nitric Oxide Synthase 3
,”
J. Clin. Invest.
,
101
(
11
), pp.
2468
2477
.10.1172/JCI2356
31.
Wang
,
Z.
, and
Chesler
,
N. C.
,
2011
, “
Pulmonary Vascular Wall Stiffness: An Important Contributor to the Increased Right Ventricular Afterload With Pulmonary Hypertension
,”
Pulm. Circ.
,
1
(
2
), pp.
212
223
.10.4103/2045-8932.83453
32.
Habre
,
W.
,
Janosi
,
T. Z.
,
Fontao
,
F.
,
Meyers
,
C.
,
Albu
,
G.
,
Pache
,
J. C.
, and
Petak
,
F.
,
2010
, “
Mechanisms for Lung Function Impairment and Airway Hyperresponsiveness Following Chronic Hypoxia in Rats
,”
Am. J. Physiol. Lung Cell. Mol. Physiol.
,
298
(
4
), pp.
L607
614
.10.1152/ajplung.00222.2009
33.
Inscore
,
S. C.
,
Stenmark
,
K. R.
,
Orton
,
C.
, and
Irvin
,
C. G.
,
1991
, “
Neonatal Calves Develop Airflow Limitation due to Chronic Hypobaric Hypoxia
,”
J. Appl. Physiol.
,
70
(
1
), pp.
384
390
.
34.
Lammers
,
T.
,
Subr
,
V.
,
Peschke
,
P.
,
Kuhnlein
,
R.
,
Hennink
,
W. E.
,
Ulbrich
,
K.
,
Kiessling
,
F.
,
Heilmann
,
M.
,
Debus
,
J.
,
Huber
,
P. E.
, and
Storm
,
G.
,
2008
, “
Image-Guided and Passively Tumour-Targeted Polymeric Nanomedicines for Radiochemotherapy
,”
Br. J. Cancer
,
99
(
6
), pp.
900
910
.10.1038/sj.bjc.6604561
You do not currently have access to this content.