Ultra high molecular weight polyethylene (UHMWPE, or ultra high), a frequently used material in orthopedic joint replacements, is often the cause of joint failure due to wear, fatigue, or fracture. These mechanical failures have been related to ultra high's strength and stiffness, and ultimately to the underlying microstructure, in previous experimental studies. Ultra high's semicrystalline microstructure consists of about 50% crystalline lamellae and 50% amorphous regions. Through common processing treatments, lamellar percentage and size can be altered, producing a range of mechanical responses. However, in the orthopedic field the basic material properties of the two microstructural phases are not typically studied independently, and their manipulation is not computationally optimized to produce desired mechanical properties. Therefore, the purpose of this study is to: (1) develop a 2D linear elastic finite element model of actual ultra high microstructure and fit the mechanical properties of the microstructural phases to experimental data and (2) systematically alter the dimensions of lamellae in the model to begin to explore optimizing the bulk stiffness while decreasing localized stress. The results show that a 2D finite element model can be built from a scanning electron micrograph of real ultra high lamellar microstructure, and that linear elastic constants can be fit to experimental results from those same ultra high formulations. Upon altering idealized lamellae dimensions, we found that bulk stiffness decreases as the width and length of lamellae increase. We also found that maximum localized Von Mises stress increases as the width of the lamellae decrease and as the length and aspect ratio of the lamellae increase. Our approach of combining finite element modeling based on scanning electron micrographs with experimental results from those same ultra high formulations and then using the models to computationally alter microstructural dimensions and properties could advance our understanding of how microstructure affects bulk mechanical properties. This advanced understanding could allow for the engineering of next-generation ultra high microstructures to optimize mechanical behavior and increase device longevity.
Skip Nav Destination
Article navigation
February 2013
Research-Article
Computational Analysis of Microstructure of Ultra High Molecular Weight Polyethylene for Total Joint Replacement
Kelly M. Seymour,
Sara A. Atwood
Sara A. Atwood
1
1Corresponding author.
Search for other works by this author on:
Kelly M. Seymour
e-mail: seymourk@etown.edu
Sara A. Atwood
1Corresponding author.
Contributed by the Bioengineering Division of ASME for publication in the JOURNAL OF BIOMECHANICAL ENGINEERING. Manuscript received September 18, 2012; final manuscript received December 30, 2012; accepted manuscript posted January 9, 2013; published online February 7, 2013. Editor: Beth Winkelstein.
J Biomech Eng. Feb 2013, 135(2): 021017 (6 pages)
Published Online: February 7, 2013
Article history
Received:
September 18, 2012
Revision Received:
December 30, 2012
Accepted:
January 9, 2013
Citation
Seymour, K. M., and Atwood, S. A. (February 7, 2013). "Computational Analysis of Microstructure of Ultra High Molecular Weight Polyethylene for Total Joint Replacement." ASME. J Biomech Eng. February 2013; 135(2): 021017. https://doi.org/10.1115/1.4023321
Download citation file:
Get Email Alerts
Cited By
A Numerical Study of Crack Penetration and Deflection at the Interface Between Peritubular and Intertubular Dentin
J Biomech Eng (December 2024)
Related Articles
Tribological and Nanomechanical Properties of Unmodified and Crosslinked Ultra-High Molecular Weight Polyethylene for Total Joint Replacements
J. Tribol (April,2004)
Microstructural Characterization of Ultrasonically Welded Aluminum
J. Eng. Mater. Technol (January,2005)
Calibration of Hyperelastic Material Properties of the Human Lumbar Intervertebral Disc under Fast Dynamic Compressive Loads
J Biomech Eng (October,2011)
Simulated Bioprosthetic Heart Valve Deformation under Quasi-Static Loading
J Biomech Eng (November,2005)
Related Proceedings Papers
Related Chapters
Surface Analysis and Tools
Tribology of Mechanical Systems: A Guide to Present and Future Technologies
Introduction and Definitions
Handbook on Stiffness & Damping in Mechanical Design
Understanding the Problem
Design and Application of the Worm Gear