Stimulated by a recent controversy regarding pressure drops predicted in a giant aneurysm with a proximal stenosis, the present study sought to assess variability in the prediction of pressures and flow by a wide variety of research groups. In phase I, lumen geometry, flow rates, and fluid properties were specified, leaving each research group to choose their solver, discretization, and solution strategies. Variability was assessed by having each group interpolate their results onto a standardized mesh and centerline. For phase II, a physical model of the geometry was constructed, from which pressure and flow rates were measured. Groups repeated their simulations using a geometry reconstructed from a micro-computed tomography (CT) scan of the physical model with the measured flow rates and fluid properties. Phase I results from 25 groups demonstrated remarkable consistency in the pressure patterns, with the majority predicting peak systolic pressure drops within 8% of each other. Aneurysm sac flow patterns were more variable with only a few groups reporting peak systolic flow instabilities owing to their use of high temporal resolutions. Variability for phase II was comparable, and the median predicted pressure drops were within a few millimeters of mercury of the measured values but only after accounting for submillimeter errors in the reconstruction of the life-sized flow model from micro-CT. In summary, pressure can be predicted with consistency by CFD across a wide range of solvers and solution strategies, but this may not hold true for specific flow patterns or derived quantities. Future challenges are needed and should focus on hemodynamic quantities thought to be of clinical interest.

References

1.
Taylor
,
C. A.
, and
Steinman
,
D. A.
,
2010
, “
Image-Based Modeling of Blood Flow and Vessel Wall Dynamics: Applications, Methods and Future Directions
,”
Ann. Biomed. Eng.
,
38
(
3
), pp.
1188
1203
.10.1007/s10439-010-9901-0
2.
Steinman
,
D. A.
,
2011
, “
Assumptions in Modelling of Large Artery Hemodynamics
,”
Ambrosi
,
D.
,
Quarteroni
,
A.
, and
Rozza
,
G.
(eds.),
Modelling of Physiological Flows
,
Springer-Verlag
,
Milan
.
3.
Ford
,
M. D.
Nikolov
,
H. N.
,
Milner
,
J. S.
,
Lownie
,
S. P.
,
Demont
,
E. M.
,
Kalata
,
W.
,
Loth
,
F.
,
Holdsworth
,
D. W.
, and
Steinman
,
D. A.
,
2008
, “
PIV-Measured Versus CFD-Predicted Flow Dynamics in Anatomically Realistic Cerebral Aneurysm Models
,”
ASME J. Biomech. Eng.
,
130
(
2
), p.
021015
.10.1115/1.2900724
4.
Raschi
,
M.
,
Mut
,
F.
,
Byrne
,
G.
,
Putman
,
C. M.
,
Tateshima
,
S.
,
Vinuela
,
F.
,
Tanoue
,
T.
,
Tanishita
,
K.
, and
Cebral
,
J. R.
,
2012
, “
CFD and PIV Analysis of Hemodynamics in a Growing Intracranial Aneurysm
,”
Int. J. Num. Meth. Biomed. Eng.
,
28
(
2
), pp.
214
228
.10.1002/cnm.1459
5.
van Ooij
,
P.
,
Guedon
,
A.
,
Poelma
,
C.
,
Schneiders
,
J.
,
Rutten
,
M. C.
,
Marquering
,
H. A.
,
Majoie
,
C. B.
,
VanBavel
,
E.
, and
Nederveen
,
A. J.
,
2012
, “
Complex Flow Patterns in a Real-Size Intracranial Aneurysm Phantom: Phase Contrast MRI Compared With Particle Image Velocimetry and Computational Fluid Dynamics
,”
NMR Biomed.
,
25
(
1
), pp.
14
26
.10.1002/nbm.1706
6.
Rayz
,
V. L.
,
Boussel
,
L.
,
Acevedo-Bolton
,
G.
,
Martin
,
A. J.
,
Young
,
W. L.
,
Lawton
,
M. T.
,
Higashida
,
R.
, and
Saloner
,
D.
,
2008
, “
Numerical Simulations of Flow in Cerebral Aneurysms: Comparison of CFD Results and In Vivo MRI Measurements
,”
ASME J. Biomech. Eng.
,
130
(
5
), p.
051011
.10.1115/1.2970056
7.
Arzani
,
A.
,
Dyverfeldt
,
P.
,
Ebbers
,
T.
,
Shadden
,
S. C.
,
2012
, “
In Vivo Validation of Numerical Prediction for Turbulence Intensity in an Aortic Coarctation
,”
Ann. Biomed. Eng.
,
40
(
4
), pp.
860
870
.10.1007/s10439-011-0447-6
8.
Sun
,
Q.
,
Groth
,
A.
, and
Aach
,
T.
,
2012
, “
Comprehensive Validation of Computational Fluid Dynamics Simulations of In-Vivo Blood Flow in Patient-Specific Cerebral Aneurysms
,”
Med. Phys.
,
39
(
2
), pp.
742
754
.10.1118/1.3675402
9.
Radaelli
,
A. G.
,
Augsburger
,
L.
,
Cebral
,
J. R.
,
Ohta
,
M.
,
Rufenacht
,
D. A.
,
Balossino
,
R.
,
Benndorf
,
G.
,
Hose
,
D. R.
,
Marzo
,
A.
,
Metcalfe
,
R.
,
Mortier
,
P.
,
Mut
,
F.
,
Reymond
,
P.
,
Socci
,
L.
,
Verhegghe
,
B.
, and
Frangi
,
A. F.
,
2008
, “
Reproducibility of Haemodynamical Simulations in a Subject-Specific Stented Aneurysm Model—a Report on the Virtual Intracranial Stenting Challenge 2007
,”
J. Biomech.
,
41
(
10
), pp.
2069
2081
.10.1016/j.jbiomech.2008.04.035
10.
Stewart
,
S. F. C.
,
Paterson
,
E. G.
,
Burgreen
,
G. W.
,
Hariharan
,
P.
,
Giarra
,
M.
,
Reddy
,
V.
,
Day
,
S. W.
,
Manning
,
K. B.
,
Deutsch
,
S.
,
Berman
,
M. R.
,
Myers
,
M. R.
, and
Malinauskas
,
R. A.
,
2012
, “
Assessment of CFD Performance in Simulations of an Idealized Medical Device: Results of the FDA's First Computational Interlaboratory Study
,”
Cardiovasc. Eng. Technol.
,
3
(
2
), pp.
139
160
.10.1007/s13239-012-0087-5
11.
Cebral
,
J. R.
,
Mut
,
F.
,
Raschi
,
M.
,
Scrivano
,
E.
,
Ceratto
,
R.
,
Lylyk
,
P.
, and
Putman
,
C. M.
,
2011
, “
Aneurysm Rupture Following Treatment With Flow-Diverting Stents: Computational Hemodynamics Analysis of Treatment
,”
AJNR Am. J. Neuroradiol.
,
32
(
1
), pp.
27
33
.10.3174/ajnr.A2274
12.
Fiorella
,
D.
,
Sadasivan
,
C.
,
Woo
,
H. H.
, and
Lieber
,
B.
,
2011
, “
Regarding ‘Aneurysm rupture following treatment With flow-diverting stents: computational hemodynamics analysis of treatment
,’”
AJNR Am. J. Neuroradiol.
,
32
(
5
), pp.
E95
E97
; author reply E98–E100.10.3174/ajnr.A2534
13.
Yim
,
P. J.
,
Cebral
,
J. R.
,
Weaver
,
A.
,
Lutz
,
R. J.
,
Soto
,
O.
,
Vasbinder
,
G. B.
,
Ho
,
V. B.
, and
Choyke
,
P.L.
,
2004
, “
Estimation of the Differential Pressure at Renal Artery Stenoses
,”
Magn. Reson. Med.
,
51
(
5
), pp.
969
977
.10.1002/mrm.20078
14.
Steinman
,
D. A.
,
2011
, “
Computational Modeling and Flow Diverters: A Teaching Moment
,”
AJNR Am. J. Neuroradiol.
32
(
6
), pp.
981
983
.10.3174/ajnr.A2711
15.
Antiga
,
L.
,
Piccinelli
,
M.
,
Botti
,
L.
,
Ene-Iordache
,
B.
,
Remuzzi
,
A.
,
Steinman
,
D. A.
,
2008
, “
An Image-Based Modeling Framework for Patient-Specific Computational Hemodynamics
,”
Med. Biol. Eng. Comput.
,
46
(
11
), pp.
1097
1112
.10.1007/s11517-008-0420-1
16.
Cheng
,
C.
,
Helderman
,
F.
,
Tempel
,
D.
,
Segers
,
D.
,
Hierck
,
B.
,
Poelmann
,
R.
,
van Tol
,
A.
,
Duncker
,
D. J.
,
Robbers-Visser
,
D.
,
Ursem
,
N. T. C.
,
van Haperen
,
R.
,
Wentzel
,
J. J.
,
Gijsen
,
F.
,
van der Steen
,
A. F. W.
,
de Crom
,
R.
,
Krams
,
R.
2007
, “
Large Variations in Absolute Wall Shear Stress Levels Within One Species and Between Species
,”
Atherosclerosis
,
195
(
2
), pp.
225
235
.10.1016/j.atherosclerosis.2006.11.019
17.
Morris
,
L.
,
O'Donnell
,
P.
,
Delassus
,
P.
, and
McGloughlin
,
T.
,
2004
, “
Experimental Assessment of Stress Patterns in Abdominal Aortic Aneurysms Using the Photoelastic Method
,”
Strain
40
(
4
), pp.
165
172
.10.1111/j.1475-1305.2004.tb01425.x
18.
O'Brien
,
T.
,
Morris
,
L.
,
O'Donnell
,
M.
,
Walsh
,
M.
, and
McGloughlin
,
T.
,
2005
, “
Injection-Moulded Models of Major and Minor Arteries: The Variability of Model Wall Thickness Owing to Casting Technique
,”
Proc. Inst. Mech. Eng. H
,
219
(
H5
), pp.
381
386
.
19.
Ene
,
F.
,
Gachon
,
C.
,
Delassus
,
P.
,
Carroll
,
R.
,
Stefanov
,
F.
,
O'Flynn
,
P.
, and
Morris
,
L.
,
2011
, “
In Vitro Evaluation of the Effects of Intraluminal Thrombus on Abdominal Aortic Aneurysm Wall Dynamics
,”
Med. Eng. Phys.
,
33
(
8
), pp.
957
966
.10.1016/j.medengphy.2011.03.005
20.
Fahy
,
P.
,
Delassus
,
P.
,
O'Flynn
,
P.
, and
Morris
,
L.
,
2011
, “
An Experimental Study of the Effects Anatomical Variations Have on Collateral Flows Within the Circle of Willis
,”
Proc ASME Summer Bioeng. Conf.
,
Farmington, VA
,
June 2011
.
21.
Kallmes
,
D. F.
,
2012
, “
Point: CFD—Computational Fluid Dynamics or Confounding Factor Dissemination
,”
AJNR Am. J. Neuroradiol.
,
33
(
3
), pp.
395
396
.10.3174/ajnr.A2993
22.
Cebral
,
J. R.
, and
Meng
,
H.
,
2012
, “
Counterpoint: Realizing the Clinical Utility of Computational Fluid Dynamics—Closing the Gap
,”
AJNR Am. J. Neuroradiol.
,
33
(
3
), pp.
396
398
.10.3174/ajnr.A2994
You do not currently have access to this content.