The purpose of this study was to perform a blinded comparison of model predictions of total knee replacement contact forces to in vivo forces from an instrumented prosthesis during normal walking and medial thrust gait by participating in the “Third Grand Challenge Competition to Predict in vivo Knee Loads.” We also evaluated model assumptions that were critical for accurate force predictions. Medial, lateral, and total axial forces through the knee were calculated using a previously developed and validated parametric numerical model. The model uses equilibrium equations between internal and external moments and forces to obtain knee joint contact forces and calculates a range of forces at instances during the gait cycle through parametric variation of muscle activity levels. For 100 instances during a normal over-ground gait cycle, model root mean square differences from eTibia data were 292, 248, and 281 for medial, lateral, and total contact forces, respectively. For 100 instances during a medial thrust gait cycle, model root mean square differences from eTibia data were 332, 234, and 470 for medial, lateral, and total contact forces, respectively. The percent difference between measured and predicted peak total axial force was 2.89% at the first peak and 9.36% at the second peak contact force for normal walking and 3.94% at the first peak and 14.86% at the second peak contact force for medial thrust gait. After unblinding, changes to model assumptions improved medial and lateral force predictions for both gait styles but did not improve total force predictions. Axial forces computed with the model compared well to the eTibia data under blinded and unblinded conditions. Knowledge of detailed knee kinematics, namely anterior-posterior translation, appears to be critical in obtaining accurate force predictions.

References

1.
Komistek
,
R. D.
,
Kane
,
T. R.
,
Mahfouz
,
M.
,
Ochoa
,
J. A.
, and
Dennis
,
D. A.
,
2005
, “
Knee Mechanics: A Review of Past and Present Techniques to Determine In Vivo Loads
,”
J. Biomech.
,
38
(
2
) pp.
215
228
.10.1016/j.jbiomech.2004.02.041
2.
Fregly
,
B. J.
,
Besier
,
T. F.
,
Lloyd
,
D. G.
,
Delp
,
S. L.
,
Banks
,
S. A.
,
Pandy
,
M. G.
, and
D'Lima
,
D. D.
,
2012
, “
Grand Challenge Competition to Predict In Vivo Knee Loads
,”
J. Orthop. Res.
,
30
(
4
), pp.
503
513
.10.1002/jor.22023
3.
Paul
,
J. P.
, and
McGrouther
,
D. A.
,
1975
, “
Forces Transmitted at the Hip and Knee Joint of Normal and Disabled Persons During a Range of Activities
,”
Acta Orthop. Belg.
,
41
Suppl. 1(1)
, pp.
78
88
.
4.
Morrison
,
J. B.
,
1968
, “
Bioengineering Analysis of Force Actions Transmitted by the Knee Joint
,”
Biomed. Mater. Eng.
,
3
, pp.
164
170
.
5.
Seireg
,
A.
, and
Arvikar
,
R. J.
,
1975
, “
The Prediction of Muscular Lad Sharing and Joint Forces in the Lower Extremities During Walking
,”
J. Biomech.
,
8
(
2
), pp.
89
102
.10.1016/0021-9290(75)90089-5
6.
D'Lima
,
D. D.
,
Patil
,
S.
,
Steklov
,
N.
,
Slamin
,
J. E.
, and
Colwell
, Jr.,
C. W.
,
2005
, “
The Chitranjan Ranawat Award: In Vivo Knee Forces After Total Knee Arthroplasty
,”
Clin. Orthop. Relat. Res.
,
440
, pp.
45
49
.10.1097/01.blo.0000186559.62942.8c
7.
D'Lima
,
D. D.
,
Patil
,
S.
,
Steklov
,
N.
,
Slamin
,
J. E.
, and
Colwell
, Jr.,
C. W.
,
2006
, “
Tibial Forces Measured In Vivo After Total Knee Arthroplasty
,”
J. Arthroplasty
,
21
(
2
), pp.
255
262
.10.1016/j.arth.2005.07.011
8.
D'Lima
,
D. D.
,
Patil
,
S.
,
Steklov
,
N.
,
Chien
,
S.
, and
Colwell
, Jr.,
C. W
,
2007
, “
In Vivo Knee Moments and Shear After Total Knee Arthroplasty
,”
J. Biomech.
,
40
(
Suppl 1
), pp.
S11
S17
.10.1016/j.jbiomech.2007.03.004
9.
Zhao
,
D.
,
Banks
,
S. A.
,
D'Lima
,
D. D.
,
Colwell
, Jr.,
C. W.
, and
Fregly
,
B. J.
,
2007
, “
In Vivo Medial and Lateral Tibial Loads During Dynamic and High Flexion Activities
,”
J. Orthop. Res.
,
25
(
5
), pp.
593
602
.10.1002/jor.20362
10.
D'Lima
,
D. D.
,
Steklov
,
N.
,
Patil
,
S.
, and
Colwell
, Jr.,
C. W
,
2008
, “
The Mark Coventry Award: In Vivo Knee Forces During Recreation and Exercise After Knee Arthroplasty
,”
Clin. Orthop. Relat. Res.
,
466
(
11
), pp.
2605
2611
.10.1007/s11999-008-0345-x
11.
Müendermann
,
A.
,
Dyrby
,
C. O.
,
D'Lima
,
D. D.
,
Colwell
, Jr.,
C. W.
, and
Andriacchi
,
T. P.
,
2008
, “
In Vivo Knee Loading Characteristics During Activities of Daily Living as Measured by an Instrumented Total Knee Replacement
,”
J. Orthop. Res.
,
26
(
9
), pp.
1167
1172
.10.1002/jor.20655
12.
Heinlein
,
B.
,
Graichen
,
F.
,
Bender
,
A.
,
Rohlmann
,
A.
, and
Bergmann
,
G.
,
2007
, “
Design, Calibration and Pre-Clinical Testing of an Instrumented Tibial Tray
,”
J. Biomech.
,
40
(
Suppl 1
), pp.
S4
S10
.10.1016/j.jbiomech.2007.02.014
13.
Bergmann
,
G.
,
2008
, “
OrthoLoad
,” Charite – Universitaetsmedizin Berlin, http://www.OrthoLoad.com
14.
Kutzner
,
I.
,
Heinlein
,
B.
Graichen
,
F.
,
Bender
,
A.
,
Rohlmann
,
A.
,
Halder
,
A.
,
Beier
,
A.
, and
Bergmann
,
G.
,
2010
, “
Loading of the Knee Joint During Activities of Daily Living Measured In Vivo in Five Subjects
,”
J. Biomech.
,
43
(
11
), pp.
2164
2173
.10.1016/j.jbiomech.2010.03.046
15.
Lundberg
,
H. J.
,
Foucher
,
K. C.
, and
Wimmer
,
M. A.
,
2009
, “
A Parametric Approach to Numerical Modeling of TKR Contact Forces
,”
J. Biomech.
,
42
(
4
), pp.
541
545
.10.1016/j.jbiomech.2008.11.030
16.
Hurwitz
,
D. E.
,
Foucher
,
K. C.
, and
Andriacchi
,
T. P.
,
2003
, “
A New Parametric Approach for Modeling Hip Forces During Gait
,”
J. Biomech.
,
36
(
1
), pp.
113
119
.10.1016/S0021-9290(02)00328-7
17.
Lundberg
,
H. J.
,
Foucher
,
K. C.
,
Andriacchi
,
T. P.
, and
Wimmer
,
M. A.
,
2012
, “
Direct Comparison of Measured and Calculated Total Knee Replacement Force Envelopes During Walking in the Presence of Normal and Abnormal Gait Patterns
,”
J. Biomech.
,
45
(
6
), pp.
990
996
.10.1016/j.jbiomech.2012.01.015
18.
Reinbolt
,
J. A.
,
Schutte
,
J. F.
,
Fregly
,
B. J.
,
Koh
,
B. I.
,
Haftka
,
R. T.
,
George
,
A. D.
, and
Mitchell
,
K. H.
,
2005
, “
Determination of Patient-Specific Multi-Joint Kinematic Models Through Two-Level Optimization
,”
J. Biomech.
,
38
(
3
), pp.
621
626
.10.1016/j.jbiomech.2004.03.031
19.
Swanson
,
A. J.
,
Ngai
,
V.
,
Inoue
,
N.
, and
Wimmer
,
M. A.
,
2007
, “
Analysis of the Tibio-Femoral Contact Point in Total Knee Replacement Using a Marker Based Motion Analysis System
,”
Proc. ASME, 2007 SBC
, pp.
39
40
.
20.
Delp
,
S. L.
,
Loan
,
J. P.
,
Hoy
,
M. G.
,
Zajac
,
F. E.
,
Topp
,
E. L.
, and
Rosen
,
J. M.
,
1990
, “
An Interactive Graphics-Based Model of the Lower Extremity to Study Orthopaedic Surgical Procedures
,”
IEEE Trans. Biomed. Eng.
,
37
(
8
), pp.
757
767
.10.1109/10.102791
21.
Delp
,
S. L.
,
Anderson
,
F. C.
,
Arnold
,
A. S.
,
Loan
,
P.
,
Habib
,
A.
,
John
,
C. T.
,
Guendelman
,
E.
, and
Thelen
,
D. G.
,
2007
, “
OpenSim: Open-Source Software to Create and Analyze Dynamic Simulations of Movement
,”
IEEE Trans. Biomed. Eng.
,
54
(
11
), pp.
1940
1950
.10.1109/TBME.2007.901024
22.
Lundberg
,
H. J.
,
Ngai
,
V.
, and
Wimmer
,
M. A.
,
2012
, “
Comparison of ISO Standard and TKR Patient Axial Force Profiles During the Stance Phase of Gait
,”
Proc. Inst. Mech. Eng. Part H J. Eng. Med.
,
226
(
3
), pp.
227
234
.10.1177/0954411911431650
23.
Ngai
,
V.
, and
Wimmer
,
M. A.
,
2009
, “
Kinematic Evaluation of Cruciate-Retaining Total Knee Replacement Patients During Level Walking: A Comparison With the Displacement-Controlled ISO Standard
,”
J. Biomech.
,
42
(
14
), pp.
2363
2368
.10.1016/j.jbiomech.2009.06.030
24.
Ngai
,
V.
,
Uth
,
T.
,
Kunze
,
J.
, and
Wimmer
,
M. A.
,
2011
, “
Backside Wear of Tibial Polyethylene Components Is Affected by Gait
,”
Trans. ORS
,
36
, p.
1142
.
25.
Wimmer
,
M. A.
, and
Andriacchi
,
T. P.
,
1997
, “
Tractive Forces During Rolling Motion of the Knee: Implications for Wear in Total Knee Replacement
,”
J. Biomech.
,
30
(
2
), pp.
131
137
.10.1016/S0021-9290(96)00112-1
26.
Lundberg
,
H. J.
,
Foucher
,
K. C.
,
Ngai
,
V.
,
Rojas
,
I.
,
Swanson
,
A.
, and
Wimmer
,
M. A.
,
2009
, “
The Influence of Kinematic Input Variability on Calculated Knee Joint Contact Forces
,”
Trans. ORS
,
34
, p.
1975
.
27.
Whelan
,
P.
,
Wimmer
,
M. A.
, and
Lundberg
,
H. J.
,
2012
, “
The Effect of Anatomical Variation on TKR Contact Forces During the Stance Phase of Gait
,”
Trans. ORS
,
37
, p.
1980
.
28.
Draganich
,
L. F.
,
Andriacchi
,
T. P.
, and
Andersson
,
G. B.
,
1987
, “
Interaction Between Intrinsic Knee Mechanics and the Knee Extensor Mechanism
,”
J. Orthop. Res.
,
5
(
4
), pp.
539
547
.10.1002/jor.1100050409
29.
Haas
,
B. D.
,
Komistek
,
R. D.
,
Stiehl
,
J. B.
,
Anderson
,
D. T.
, and
Northcut
,
E. J.
,
2002
, “
Kinematic Comparison of Posterior Cruciate Sacrifice Versus Substitution in a Mobile Bearing Total Knee Arthroplasty
,”
J. Arthroplasty
,
17
(
6
), pp.
685
692
.10.1054/arth.2002.33550
30.
Orozco
,
D. A.
, and
Wimmer
,
M. A.
,
2011
, “
Development of a Multi-Activity Protocol for TKR Wear Assessment
,”
Trans. ORS
,
36
, p.
1109
.
31.
Stiehl
,
J. B.
,
Komistek
,
R.
, and
Dennis
,
D. A.
,
2001
, “
A Novel Approach to Knee Kinematics
,”
Am. J. Orthop.
,
30
(
4
), pp.
287
293
.10.1007/s001320050610
32.
Alexander
,
E. J.
, and
Andriacchi
,
T. P.
,
2001
, “
Correcting for Deformation in Skin-Based Marker Systems
,”
J. Biomech.
,
34
(
3
), pp.
355
361
.10.1016/S0021-9290(00)00192-5
33.
Lundberg
,
H. J.
, and
Wimmer
,
M. A.
,
2013
, “
Relative Antagonist Activity During Walking for TKR Patients and Asymptomatic Controls
,”
Trans. ORS
,
38
, p.
1679
.
34.
Halder
,
A.
,
Kutzner
,
I.
,
Graichen
,
F.
,
Heinlein
,
B.
,
Beier
,
A.
, and
Bergmann
,
G.
,
2012
, “
Influence of Limb Alignment on Mediolateral Loading in Total Knee Replacement: In Vivo Measurements in Five Patients
,”
J. Bone Joint. Surg. Am.
,
94
(
11
), pp.
1023
1029
.10.2106/JBJS.K.00927
35.
Heinlein
,
B.
,
Kutzner
,
I.
,
Graichen
,
F.
,
Bender
,
A.
,
Rohlmann
,
A.
,
Halder
,
A. M.
,
Beier
,
A.
, and
Bergmann
,
G.
,
2009
, “
ESB Clinical Biomechanics Award 2008: Complete Data of Total Knee Replacement Loading for Level Walking and Stair Climbing Measured In Vivo With a Follow-Up of 6-10 Months
,”
Clin. Biomech.
,
24
(
4
), pp.
315
326
.10.1016/j.clinbiomech.2009.01.011
You do not currently have access to this content.